Aspera is a NASA Pioneers Mission designed to measure faint OVI emission around nearby galaxies with unprecedented sensitivity. The SmallSat payload consists of two identical co-aligned spectrographs, both operating in the Far Ultraviolet (FUV) between 1030−1040 Å. Missions operating at FUV wavelengths are particularly sensitive to contamination, as short wavelengths are easily scattered and absorbed by contaminants deposited on payload optical surfaces. A strict contamination control plan is critical to avoiding a severe loss in FUV throughput. Aspera contamination control efforts have been tailored to fit within the scope of a sub-Class D mission, a challenge that has become increasingly relevant as advances in FUV optics/detectors drive an uptick in smaller platform, contamination sensitive UV payloads. Contamination monitoring is used to audit the cleanroom environment, avoid outgassing contaminants under vacuum, and assess contaminant levels on payload optics. We present a detailed contamination budget through the mission end of life as well as our ongoing contamination monitoring efforts. We discuss protocols implemented for minimizing contamination-related performance degradation.
Aspera is a NASA-funded UV SmallSat mission designed to detect and map warm-hot phase halo gas around nearby galaxies. The Aspera payload is designed to detect faint diffuse O VI emission at around 103.2 nm, satisfying the sensitivity requirement of 5×10−19 erg/s/cm2/arcsec2 over 179 hours of exposure. In this manuscript, we describe the overall payload design of Aspera. The payload comprises two identical co-aligned UV long-slit spectrograph optical channels sharing a common UV-sensitive microchannel plate detector. The design delivers spectral resolution R ∼ 2,000 over the wavelength range of 101 to 106 nm. The field of view of each channel is 1 degree by 30 arcsec, with an effective area of 1.1 cm2. The mission is now entering the payload integration and testing phase, with the projected launch-ready date set for late 2025 or early 2026. The mission will be launched into low-Earth orbit via rideshare.
Aspera is a NASA Astrophysics Pioneers SmallSat mission designed to study diffuse Ovi emission from the warm-hot phase gas in the halos of nearby galaxies. Its payload consists of two identical Rowland Circle-type long-slit spectrographs, sharing a single MicroChannel plate detector. Each spectrograph channel consists of an off-axis parabola primary mirror and a toroidal diffraction grating optimized for the 1013-1057 Å bandpass. Despite the simple configuration, the optical alignment/integration process for Aspera is challenging due to tight optical alignment tolerances, driven by the compact form factor, and the contamination sensitivity of the Far-Ultraviolet optics and detectors. In this paper, we discuss implementing a novel multi-phase approach to meet these requirements using state-of-the-art optical metrology tools. For coarsely positioning the optics we use a blue-laser 3D scanner while the fine alignment is done with a Zygo interferometer and a custom computer-generated hologram. The detector focus requires iterative in-vacuum alignment using a Vacuum UV collimator. The alignment is done in a controlled cleanroom facility at the University of Arizona.
We present the integration of a new calibration system into the Faint Intergalactic-medium Redshifted Emission Balloon-2 (FIREBall-2), which added in-flight calibration capability for the recent September 2023 flight. This system is composed of a calibration source box containing zinc and deuterium lamp sources, focusing optics, electronics, sensors, and a fiber-fed calibration cap with an optical shutter mounted on the spectrograph tank. We discuss how the calibration cap is optimized to be evenly illuminated through non-sequential modeling for the near-UV (191 to 221 nm) for spectrograph slit mask position calibration, electron multiplying charged-coupled device (EMCCD) gain amplification verification, and wavelength calibration. Then, we present the pre-flight performance testing results of the calibration system and their implications for in-flight measurements. FIREBall-2 flew in 2023, but did not collect calibration data due to early termination of the flight.
Aspera is a NASA-funded UV SmallSat Mission in development with a projected launch in 2025. The goal of the mission is to detect and map warm-hot gas in the circumgalactic medium of nearby galaxies traced by the Ovi emission line at 103.2 nm. To that goal, Aspera will conduct long-exposure observations at one or more spatial fields around each target galaxy, employing two long-slit spectrographs. Spectra from both channels are focused on a single micro-channel plate detector. In preparation of the mission’s launch, we are developing a data reduction pipeline, the goal of which is to reconstruct a calibrated 3D IFU-like data cube by combining the photon event lists obtained during each observation for a given target galaxy. In this proceedings paper, we present an outline for the data reduction pipeline and describe the data flow through the processing of science observations. We will further discuss individual steps to be applied to the data during the processing and show how our final data cubes shall be reconstructed. Finally, we will present our planned data products and discuss how simulations of the Aspera data cubes are being used to develop the pipeline.
The search for artificial and natural objects in both cis-lunar and trans-lunar space has grown increasingly important. To accurately detect and track small objects, stray light mitigation is a necessity. Observations conducted in 2022 from a ground-based telescope intended to track such objects have been hampered by excess lunar stray light. In this paper, we present work done to resolve this problem by applying black pigments to the optical tube and thus suppressing its surface scattering. A non-sequential ray tracing model was created to analyze the telescope’s final focal plane irradiance. This model was used to identify critical and illuminated surfaces to determine the stray light paths that have affected observations. We conducted experimental tests to measure the Bidirectional Reflectance Distribution Function (BRDF) of various practical, readily available, and robust black coatings, including paints such as Black 3.0 and Musou. After application on the actual telescope tube, the new surface coating reduced the photon count on the detector from a variable-angle off-axis point source by 76% over all angles measured.
Integrated optical models allow for accurate prediction of the as-built performance of an optical instrument. Optical models are typically composed of a separate ray trace and diffraction model to capture both the geometrical and physical regimes of light. These models are typically separated across both open-source and commercial software that don’t interface with each other directly. To bridge the gap between ray trace models and diffraction models, we have built an open-source optical analysis platform in Python called Poke that uses commercial ray tracing APIs and open-source physical optics engines to simultaneously model scalar wavefront error, diffraction, and polarization. Poke operates by storing ray data from a commercial ray tracing engine into a Python object, from which physical optics calculations can be made. We present an introduction to using Poke, and highlight the capabilities of two new propagation modules that add to the utility of existing scalar diffraction models. Gaussian Beamlet Decomposition is a ray-based approach to diffraction modeling that allows us to integrate physical optics models with ray trace models to directly capture the influence of ray aberrations in diffraction simulations. Polarization Ray Tracing is a ray-based method of vector field propagation that can diagnose the polarization aberrations in optical systems. Poke has been recently used to study the next generation of astronomical observatories, including the ground-based Extremely Large Telescopes (TMT, GMT, ELT) and a 6 meter space telescope (6MST) early concept for NASA’s Habitable Worlds Observatory.
The integration of a new calibration system into FIREBall-2 (Faint Intergalactic Redshifted Emission Balloon-2) allows in-flight calibration capability for the upcoming Fall 2023 flight. This system is made up of a calibration box that contains zinc and deuterium lamp sources, focusing optics, electronics, and sensors, and a fiber-fed calibration cap with an optical shutter mounted on the spectrograph tank. We discuss how the calibration cap is optimized to be evenly illuminated through nonsequential modeling for the near-UV (200-208nm). Then, we present the pre-flight performance testing results of the calibration system and their implications for in-flight measurements.
We present a comprehensive stray light analysis and mitigation strategy for the FIREBall-2 ultraviolet balloon telescope. Using nonsequential optical modeling, we identified the most problematic stray light paths, which impacted telescope performance during the 2018 flight campaign. After confirming the correspondence between the simulation results and postflight calibration measurements of stray light contributions, a system of baffles was designed to minimize stray light contamination. The baffles were fabricated and coated to maximize stray light collection ability. Once completed, the baffles will be integrated into FIREBall-2 and tested for performance preceding the upcoming flight campaign. Given our analysis results, we anticipate a substantial reduction in the effects of stray light.
A comprehensive education of optical engineers is of paramount importance to the development of the industry. While optical sciences and engineering curricula are set up to teach theoretical concepts comprehensively, there appears to be a lack of required coursework that teaches students how to use industry-standard software that they will inevitably use in their careers. The Practical Optics Workshop (POW) is an initiative at the University of Arizona’s Wyant College of Optical Sciences to support the education of students that use optical design software. POW’s aim is to bridge the gap between the theory of optical system design and the problems the optical engineers of the future will face daily. POW has principally engaged students through short workshop sessions and optical design problems through inquiry-based learning activities. However, during the COVID-19 pandemic new activities have been designed to support self-paced and virtual learning to ensure the accessibility of Optical Design software education. We present the status of POW’s current initiatives and how they have impacted student learning, as well as the design of future initiatives that POW is developing for a self-paced curriculum.
LBTO, in partnership with GMTO, has been developing a laser-truss-based metrology system for the active alignment of telescope main optical components. Positive initial results convinced LBTO to commence to develop a "pathfinder" integrated operational active-optics system at prime focus, utilizing this technological approach. The prime-focus active-optics system benefits LBTO directly in improved system performance and is also very useful for GMTO in developing and gaining experience with a critical technical component of the GMT Telescope Metrology System. This paper describes the current system, which is now commissioned and operates in support of regular scientific observing. Technical aspects unique to direct laser truss metrology, such as system stability, the effects of correlated and uncorrelated noise, and the benefits of channel redundancy, will be discussed. Commissioning results and general system performance will also be reported. The paper will conclude with a section discussing some of the unexpected insights and improvements that the TMS has brought about at LBT by enabling the measurement of “clean” aberration data for aberrations arising from shape change on the borosilicate primary mirrors.
This conference presentation was prepared for the Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray conference at SPIE Astronomical Telescopes and Instrumentation, 2022.
We present a comprehensive stray light analysis and mitigation strategy for the FIREBall-2 UV telescope. Using non-sequential optical modeling, we identified the most problematic stray light paths which impacted telescope performance during the 2018 flight campaign. After confirming the correspondence between the simulation results and post-flight calibration measurements of stray light contributions, a system of baffles was designed to minimize stray light contamination. The baffles were fabricated and coated to maximize stray light collection ability. Once completed, the baffles will be integrated into FIREBall-2 and tested for performance preceding the upcoming flight campaign. Given our analysis results, we anticipate a substantial reduction in the effects of stray light.
Aspera is an extreme-UV (EUV) Astrophysics small satellite telescope designed to map the warm-hot phase coronal gas around nearby galaxy halos. Theory suggests that this gas is a significant fraction of a galaxy’s halo mass and plays a critical role in its evolution, but its exact role is poorly understood. Aspera observes this warm-hot phase gas via Ovi emission at 1032 °A using four parallel Rowland-Circle-like spectrograph channels in a single payload. Aspera’s robust-and-simple design is inspired by the FUSE spectrograph, but with smaller, four 6.2 cm × 3.7 cm, off-axis parabolic primary mirrors. Aspera is expected to achieve a sensitivity of 4.3×10−19 erg/s/cm2/arcsec2 for diffuse Ovi line emission. This superb sensitivity is enabled by technological advancements over the last decade in UV coatings, gratings, and detectors. Here we present the overall payload design of the Aspera telescope and its expected performance. Aspera is funded by the inaugural 2020 NASA Astrophysics Pioneers program, with a projected launch in late 2024.
Since 2017 LBTO, in partnership with GMTO, has been developing a laser-trussed based metrology system for the active alignment of telescope main optical components to each other and to instruments. The effort has addressed needs of both organizations; LBTO with the opportunity to assess the performance of a new technological approach to telescope alignment, and the GMTO with the opportunity to prototype and field-test a system that has been identified as a crucial "missing link" in the active-optics chain between open-loop modelling and wavefront-sensing for ELT-scale telescopes. Following two years of effort the positive results so far obtained have convinced LBTO, in 2019, to commence to develop an integrated operational active-optics system based on this technological approach. A team drawn from LBTO, Steward Observatory, GMTO, the Wyant College of Optical Sciences and Mersenne Optical Consulting are currently completing the first phase of this Telescope Metrology System (TMS). This paper shall describe the system in detail and report on progress, current status, and future goals.
Large ground-based telescopes are prone to perturbations caused by environmental factors that affect the mechanical structure of the telescope that can cause collimation loss and image quality degradation. The Telescope Metrology System (TMS) is a metrology method under development at the Giant Magellan Telescope (GMT) and prototyped on the Large Binocular Telescope (LBT) to monitor and maintain collimation and pointing. TMS measures the precise position and orientation of a telescope’s primary mirror in relation to other telescope elements. Currently, prototyping has progressed to TMS operation at prime focus between LBT’s two 8.4m primary mirrors and the Large Binocular Camera (LBC), a pair of prime focus correctors and wide-field detectors. TMS utilizes a multi-channel absolute distance measuring (ADM) interferometer to create a laser truss by determining the distance between fixed points on the primary mirror and the LBC. By performing a kinematic analysis of the ADM data, the relative position and orientation of the primary mirror and LBC can be determined. With knowledge of the position of the telescope, an optical layout model can be created using TMS data as input. This allows for iterative simulation of field aberrations and loss in image quality due to misalignment of the telescope. This will allow for collimation and pointing to be actively monitored and maintained during an observation. This paper will discuss the process of implementing TMS on LBT and the challenges that arose.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.