The Large Binocular Telescope (LBT) Observatory pioneered Adaptive Optics (AO) technologies such as Adaptive Secondary Mirror (ASM), Pyramid wavefront sensor, and Ground-layer AO using Rayleigh lasers at 8 to 10m class telescopes. We have initiated an effort to turn LBT AO into a facility-class capability. The effort involves (1) building an AO team with AO development capability, (2) improving the robustness of the AO, (3) developing in-house AO expertise to maintain and troubleshoot the AO systems, (4) automating processes for efficient on-sky operation, (5) tracking performance metrics and cultivating accountability for on-sky AO performance, and (6) minimizing the operational risks for the ASMs. We present the status of these developments. LBTO continues its efforts to develop innovative technology. We explore the next phase of AO developments, including Agile Extreme Adaptive Optics (AgXAO) on the DX side of the LINC-NIRVANA optical bench to overcome the limitation imposed by varying and large atmospheric seeing at Mount Graham. AgXAO implementation includes the development of (1) a high-order, high-sensitivity wavefront sensor, (2) a high-density deformable mirror with 3000 actuators and next-generation ASM with about 950 actuators, (3) active optics integration, (4) vibration and wavefront piston control, (5) atmospheric turbulence measurements and weather forecast integration, and (6) a visible camera and an AO-corrected narrow-field fiber-coupled IFU spectrograph using one of the existing workhorse visible spectrographs. Developing AgXAO on the SX side, too, would enable Fizeau imaging in the visible wavelengths. AgXAO will also serve as a general-purpose high-contrast (and subsequently a Fizeau imaging) Testbed on LBT to test advanced wavefront control algorithms, including astrophotonics experiments, and machine learning algorithms with minimal impact on routine science operations. We propose developing AgXAO through student projects to train the next-generation scientists and engineers for the extremely large telescope (ELT) era. The ultimate goal is to push large aperture ground-based telescopes to their performance limits and make them competitive with space telescopes in terms of PSF stability and performance to enable breakthrough science.
LBTO, in partnership with GMTO, has been developing a laser-truss-based metrology system for the active alignment of telescope main optical components. Positive initial results convinced LBTO to commence to develop a "pathfinder" integrated operational active-optics system at prime focus, utilizing this technological approach. The prime-focus active-optics system benefits LBTO directly in improved system performance and is also very useful for GMTO in developing and gaining experience with a critical technical component of the GMT Telescope Metrology System. This paper describes the current system, which is now commissioned and operates in support of regular scientific observing. Technical aspects unique to direct laser truss metrology, such as system stability, the effects of correlated and uncorrelated noise, and the benefits of channel redundancy, will be discussed. Commissioning results and general system performance will also be reported. The paper will conclude with a section discussing some of the unexpected insights and improvements that the TMS has brought about at LBT by enabling the measurement of “clean” aberration data for aberrations arising from shape change on the borosilicate primary mirrors.
The adaptive secondary mirrors (ASMs), being an integral part of the telescope optical train, have huge advantages over other wave-front correctors. At the same time, because of this specific characteristic, high performance and high reliability is required from an ASM. In this paper, we report on algorithm/software developments at the Large Binocular Telescope designed to improve performance and reliability of the two 672-voice-coil-actuators ASMs. By making use of the ASMs telemetry, we are able to intervene when critical condition occurs, monitor the daily operation of the ASMs and review the long-term trends to plan future maintenance activities.
Since 2017 LBTO, in partnership with GMTO, has been developing a laser-trussed based metrology system for the active alignment of telescope main optical components to each other and to instruments. The effort has addressed needs of both organizations; LBTO with the opportunity to assess the performance of a new technological approach to telescope alignment, and the GMTO with the opportunity to prototype and field-test a system that has been identified as a crucial "missing link" in the active-optics chain between open-loop modelling and wavefront-sensing for ELT-scale telescopes. Following two years of effort the positive results so far obtained have convinced LBTO, in 2019, to commence to develop an integrated operational active-optics system based on this technological approach. A team drawn from LBTO, Steward Observatory, GMTO, the Wyant College of Optical Sciences and Mersenne Optical Consulting are currently completing the first phase of this Telescope Metrology System (TMS). This paper shall describe the system in detail and report on progress, current status, and future goals.
Improved Adaptive Optics (AO) systems continue to revolutionize ground-based astronomy. Key to understanding a new AO systems capability is a quantitative measurement of performance, such as the Strehl Ratio (SR). At the Large Binocular Telescope (LBT) we have undertaken a program to monitor the performance of our AO system in regular use for science operations. Input to our analysis includes data taken specifically for this purpose during twilight and on engineering nights. We report our findings thus far and in particular discuss the challenges of collecting consistent data sets in twilight, the methods we used to overcome those challenges, and preliminary results from data collected so far.
The Giant Magellan Telescope (GMT)1 is a 25 m telescope composed of seven 8.4 m “unit telescopes”, on a common mount. Each primary and conjugated secondary mirror segment will feed a common instrument interface, their focal planes co-aligned and co-phased. During telescope operation, the alignment of the optical components will deflect due to variations in thermal environment and gravity induced structural flexure of the mount. The ultimate co-alignment and co-phasing of the telescope is achieved by a combination of the Acquisition Guiding and Wavefront Sensing system (AGWS) and two segment-edge-sensing systems2. An analysis of the capture range of the AGWS indicates that it is unlikely that that system will operate efficiently or reliably with initial mirror positions provided by open-loop corrections alone3.
Since 2016 GMT have been developing a telescope metrology system, that is intended to close the gap between openloop modelling and AGWS operations. A prototyping campaign was initiated soon after receipt of laser metrology hardware in 2017. This campaign is being conducted in collaboration with the Large Binocular Telescope Observatory (LBTO), and hardware was first deployed on the LBT in August 2017. Since that time the system had been run and developed over some hundreds of hours on-sky. It has been shown to be capable of reliably measuring the relative positions of the main optics over ~ 10 m to a repeatability of ~ 1-2 microns RMS. This paper will describe the prototyping campaign to date, the basic design of the system, lessons learned and results achieved. It will conclude with a discussion of future prototyping efforts.
KEYWORDS: Control systems, Observatories, Software development, Telescopes, Standards development, Process modeling, Data modeling, Computer architecture, Systems modeling, Adaptive optics
The Giant Magellan Telescope (GMT) is a 25-meter extremely large telescope that is being built by an international
consortium of universities and research institutions. Its software and control system is being developed using a set of
Domain Specific Languages (DSL) that supports a model driven development methodology integrated with an Agile
management process. This approach promotes the use of standardized models that capture the component architecture of
the system, that facilitate the construction of technical specifications in a uniform way, that facilitate communication
between developers and domain experts and that provide a framework to ensure the successful integration of the
software subsystems developed by the GMT partner institutions.
The Gemini Multi-Conjugate Adaptive Optics System (GeMS) began its on-sky commissioning in January 2011.
The system provides high order wide field corrections using a constellation of five Laser Guide Stars. In December 2011, commissioning culminated in images with a FWHM of 80±2mas at 1.65 microns (H band) over an 87 x 87 arcsecond field of view. The first images have already demonstrated the scientific potential of GeMS, and after more than a year of commissioning GeMS is finally close to completion and ready for science. This paper presents a general status of the GeMS project and summarizes the achievements made during more than a year of commissioning. The characterization of GeMS performance is presented in a companion paper: “GeMS on-sky results”, Rigaut et al. Here we report on the sub-systems' performance, discuss current limitations and present proposed upgrades. The integration of GeMS into the observatory operational scheme is detailed. Finally, we present the plans for next year's operations with GeMS.
KEYWORDS: Control systems, Observatories, Process modeling, Systems modeling, Software development, Telescopes, Space telescopes, Image processing, Data modeling, Prototyping
The Giant Magellan Telescope Organization is designing and building a ground-based 25-meter extremely large telescope. This project represents a significant increase in complexity and performance requirements over 8-10 meter class telescope control systems. This paper presents how recent software and hardware technologies and the lessons learned from the previous generation of large telescopes can help to address some of these challenges. We illustrate our model-centric approach to capture all the functionalities and workflows of the observatory subsystems, and discuss its benefits for implementing and documenting the software and control systems. The same modeling approach is also used
to capture and facilitate the development process.
With two to three deformable mirrors, three Natural Guide Stars (NGS) and five sodium Laser Guide Stars (LGS), the
Gemini Multi-Conjugate Adaptive Optics System (Gemini MCAO a.k.a. GeMS) will be the first facility-class MCAO
capability to be offered for regular science observations starting in 2013A. The engineering and science commissioning
phase of the project was kicked off in January 2011 when the Gemini South Laser Guide Star Facility (GS LGSF)
propagated its 50W laser above the summit of Cerro Pachón, Chile. GeMS commissioning has proceeded throughout
2011 and the first half of 2012 at a pace of one 6- to 10-night run per month with a 5-month pause during the 2011
Chilean winter.
This paper focuses on the LGSF-side of the project and provides an overview of the LGSF system and subsystems, their
top-level specifications, design, integration with the telescope, and performance throughout commissioning and beyond.
Subsystems of the GS LGSF include: (i) a diode-pumped solid-state 1.06+1.32 micron sum-frequency laser capable of
producing over 50W of output power at the sodium wavelength (589nm); (ii) Beam Transfer Optics (BTO) that transport
the 50W beam up the telescope, split the beam five-ways and configure the five 10W beams for projection by the Laser
Launch Telescope (LLT) located behind the Gemini South 8m telescope secondary mirror; and (iii) a variety of safety
systems to ensure safe laser operations for observatory personnel and equipment, neighbor observatories, as well as
passing aircrafts and satellites.
GeMS, the Gemini Laser Guide Star Multi-Conjugate Adaptive Optics facility system, has seen first light in December 2011, and has already produced images with H band Strehl ratio in excess of 35% over fields of view of 85x85 arcsec, fulfilling the MCAO promise. In this paper, we report on these early results, analyze trends in performance, and concentrate on key or novel aspects of the system, like centroid gain estimation, on-sky non common path aberration estimation. We also present the first astrometric analysis, showing very encouraging results.
The Gemini Multi-Conjugate Adaptive Optics System (GeMS} began its on-sky commissioning in January 20ll. The system provides high order wide-field corrections using a constellation of five Laser Guide Stars. In December 20ll, commissioning culminated in images with a FWHM of 80±2mas at 1.65 microns (H band} over an 87 x 87 arcsccond field of view. The first images have already demonstrated the scientific potential of GeMS, and after more than a year of commissioning GeMS is finally close to completion and ready for science. This paper presents a general status of the GeMS project and summarizes the achievements made during more than a year of commissioning. The characterization of GeMS performance is presented in a companion paper: "GeMS on-sky results" , R.igaut ct al. Here we report on the sub-systems' performance, discuss current limitations and present proposed upgrades. The integration of GeMS into the observatory operational scheme is detailed. Finally, we present the plans for next year's operations with GeMS.
GeMS (the Gemini Multi-conjugated adaptive optics System) is a facility instrument for the Gemini-South
telescope. It will deliver a uniform, diffraction-limited image quality at near-infrared (NIR) wavelengths over an
extended FoV or more than 1 arcmin across. GeMS is a unique and challenging project from the technological
point of view and because of its control complexity. The system includes 5 laser guide stars, 3 natural guide
stars, 3 deformable mirrors optically conjugated at 0, 4.5 and 9km and 1 tip-tilt mirror. After 10 years since
the beginning of the project, GeMS is finally reaching a state in which all the subsystems have been received,
integrated and, in the large part, tested. In this paper, we report on the progress and current status of the
different sub-systems with a particular emphasis on the calibrations, control and optimization of the AO bench.
Myst is the Gemini MCAO System (GeMS) high level control GUI. It is written in yorick, python and C. In this
paper, we review the software architecture of Myst and its primary purposes, which are many: Real-time display,
high level diagnostics, calibrations, and executor/sequencer of high level actions (closing the loop, coordinating
dithers, etc).
CANOPUS is the facility instrument for the Gemini Multi Conjugate Adaptive Optics System (GeMS) wherein all the
adaptive optics mechanisms and associated electronic are tightly packed. At an early stage in the pre-commissioning
phase Gemini undertook the redesign and implementation of its chilled Ethylene Glycol Water (EGW) cooling system to
remove the heat generated by the electronic hardware. The electronic boards associated with the Deformable Mirrors
(DM) represent the highest density heat yielding components in CANOPUS and they are also quite sensitive to
overheating. The limited size of the two electronic thermal enclosures (TE) requires the use of highly efficient heat
exchangers (HX) coupled with powerful yet compact DC fans.
A systematic approach to comply with all the various design requirements brought about a thorough and robust solution
that, in addition to the core elements (HXs and fan), makes use of features such as high performance vacuum insulated
panels, vibration mitigation elements and several environment sensors. This paper describes the design and
implementation of the solution in the lab prior to delivering CANOPUS for commissioning.
As part of its Safe Aircraft Localization and Satellite Acquisition System (SALSA), Gemini is building an All Sky Camera (ASCAM) system to detect aircrafts in order to prevent propagation of the laser that could be a safety hazard for pilots and passengers. ASCAM detections, including trajectory parameters, are made available to neighbor observatories so they may compute impact parameters given their location. We present in this paper an overview of the system
architecture, a description of the software solution and detection algorithm, some performance and on-sky result.
We present Canopus, the AO bench for Gemini's Multi Conjugate Adaptive Optics System (GEMS), a unique facility for
the Gemini South telescope located at Cerro Pachon in Chile. The MCAO system uses five laser beacons in conjunction
with different natural guide stars configurations. A deployable fold mirror located in the telescope Acquisition and
Guiding Unit (A&G) sends the telescope beam to the entrance of the bench. The beam is split within Canopus into three
main components: two sensing paths and the output corrected science beam. Light from the laser constellation (589nm)
is directed to five Shack-Hartman wave front sensors (E2V-39 CCDs read at 800Hz). Visible light from natural guide
stars is sent to three independent sensors arrays (SCPM AQ4C Avalanche Photodiodes modules in quad cell
arrangement) via optical fibers mounted on independent stages and a slow focus sensor (E2V-57 back-illuminated
CCD). The infrared corrected beam exits Canopus and goes to instrumentation for science. The Real Time Controller
(RTC) analyses wavefront signals and correct distortions using a fast tip-tilt mirror and three deformable mirrors
conjugated at different altitudes. The RTC also adjusts positioning of the laser beacon (Beam Transfer Optics fast
steering array), and handles miscellaneous offloads (M1 figure, M2 tip/tilt, LGS zoom and magnification corrections,
NGS probes adjustments etc.). Background optimizations run on a separate dedicated server to feed new parameters into
the RTC.
The Gemini Observatory is implementing a Multi-Conjugate Adaptive Optics (MCAO) system as a facility instrument
for the Gemini South telescope (GeMS). The system will include 5 Laser Guide Stars, 3 Natural Guide Stars, and 3
deformable mirrors, optically conjugated at different altitudes, to achieve near-uniform atmospheric compensation over a
one arc minute square field of view. This setup implies some level of operational complexity.
In this paper we describe how GeMS will be integrated into the flow of Gemini operations, from the observing
procedures necessary to execute the programs in the queue (telescope control software, observing tools, sequence
executor) to the safety implementation needed such as spotters/ASCAM, space command and laser traffic control
software.
The Gemini Observatory is in the final integration and test phase for its Multi-Conjugate Adaptive Optics (MCAO)
project at the Gemini South 8-meter telescope atop Cerro Pachón, Chile. This paper presents an overview and status of
the laser-side of the MCAO project in general and its Beam Transfer Optics (BTO), Laser Launch Telescope (LLT) and
Safety Systems in particular. We review the commonalities and differences between the Gemini North Laser Guide Star
(LGS) facility producing one LGS with a 10W-class laser, and its southern sibling producing five LGS with a 50W-class
laser. We also highlight the modifications brought to the initial Gemini South LGS facility design based on lessons
learned over 3 years of LGS operations in Hawaii. Finally, current integration and test results of the BTO and on-sky
LLT performance are presented. Laser first light is expected in early 2009.
The Gemini Multi-Conjugate Adaptive Optics project was launched in April 1999 to become the Gemini South
AO facility in Chile. The system includes 5 laser guide stars, 3 natural guide stars and 3 deformable mirrors optically
conjugated at 0, 4.5 and 9km to achieve near-uniform atmospheric compensation over a 1 arc minute square field of
view.
Sub-contracted systems with vendors were started as early as October 2001 and were all delivered by July
2007, but for the 50W laser (due around September 2008). The in-house development began in January 2006, and is
expected to be completed by the end of 2008 to continue with integration and testing (I&T) on the telescope. The on-sky
commissioning phase is scheduled to start during the first half of 2009.
In this general overview, we will first describe the status of each subsystem with their major requirements, risk
areas and achieved performance. Next we will present our plan to complete the project by reviewing the remaining steps
through I&T and commissioning on the telescope, both during day-time and at night-time. Finally, we will summarize
some management activities like schedules, resources and conclude with some lessons learned.
Altair is the general-purpose Adaptive Optics bench installed on Gemini North that has operated successfully with
Natural Guide Star (NGS) since 2003. The original design and fabrication included an additional WaveFront Sensor
(WFS) to enable operation with Laser Guide Star (LGS). Altair has been recently upgraded and functional
commissioning was performed between June and November 2005. The insertion of a dichroic beamsplitter in the
NGS path allows to reflect the 589nm light to the LGS wavefront sensor and transmit the visible light of the NGS (or
Tip-Tilt Guide star -TTGS-) to the tip-tilt-focus sensors. We will review the various modifications made for this dual
operation, both in hardware and software, and describe the steps and results of the integration and testing phase on the
sky.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.