The design of a CubeSat telescope for academic research purposes must balance complicated optical and structural designs with cost to maximize performance in extreme environments. Increasing the CubeSat size (eg. 6U to 12U) will increase the potential optical performance, but the cost will increase in kind. Recent developments in diamond-turning have increased the accessibility of aspheric aluminum mirrors, enabling a cost-effective regime of well-corrected nanosatellite telescopes. We present an all-aluminum versatile CubeSat telescope (VCT) platform that optimizes performance, cost, and schedule at a relatively large 95 mm aperture and 0.4 degree diffraction limited full field of view stablized by MEMS fine-steering modules. This study features a new design tool that permits easy characterization of performance degradation as a function of spacecraft thermal and structural disturbances. We will present details including the trade between on- and off-axis implementations of the VCT, thermal stability requirements and finite-element analysis, and launch survival considerations. The VCT is suitable for a range of CubeSat borne applications, which provides an affordable platform for astronomy, Earth-imaging, and optical communications.
Aspera is an extreme-UV (EUV) Astrophysics small satellite telescope designed to map the warm-hot phase coronal gas around nearby galaxy halos. Theory suggests that this gas is a significant fraction of a galaxy’s halo mass and plays a critical role in its evolution, but its exact role is poorly understood. Aspera observes this warm-hot phase gas via Ovi emission at 1032 °A using four parallel Rowland-Circle-like spectrograph channels in a single payload. Aspera’s robust-and-simple design is inspired by the FUSE spectrograph, but with smaller, four 6.2 cm × 3.7 cm, off-axis parabolic primary mirrors. Aspera is expected to achieve a sensitivity of 4.3×10−19 erg/s/cm2/arcsec2 for diffuse Ovi line emission. This superb sensitivity is enabled by technological advancements over the last decade in UV coatings, gratings, and detectors. Here we present the overall payload design of the Aspera telescope and its expected performance. Aspera is funded by the inaugural 2020 NASA Astrophysics Pioneers program, with a projected launch in late 2024.
The Coronagraphic Debris Exoplanet Exploring Payload (CDEEP) is a Small-Sat mission concept for high contrast imaging of circumstellar disks. CDEEP is designed to observe disks in scattered light at visible wavelengths at a raw contrast level of 10-7 per resolution element (10-8 with post processing). This exceptional sensitivity will allow the imaging of transport dominated debris disks, quantifying the albedo, composition, and morphology of these low-surface brightness disks. CDEEP combines an off-axis telescope, microelectromechanical systems (MEMS) deformable mirror, and a vector vortex coronagraph (VVC). This system will require rigorous testing and characterization in a space environment. We report on the CDEEP mission concept, and the status of the vacuum-compatible CDEEP prototype testbed currently under development at the University of Arizona, including design development and the results of simulations to estimate performance.
There are many astronomical, interferometric and space situational awareness applications for single and multiple 2-meter aperture optical and infrared mobile telescopes that are low cost, can be easily transported and quickly deployed at a variety of sites. A design concept is presented for a trailermounted 2-meter telescope with a novel micro-enclosure that allows the telescope to be moved and deployed quickly for observations. The telescope is protected from adverse weather using a weatherproof telescope tube instead of a conventional dome or enclosure. It has Cassegrain, Nasmyth and coudé foci suitable for astronomical, interferometric, space situational awareness, and laser communications applications, and is designed for replication at low cost. An initial implementation is being developed to explore the performance of such a telescope using re-purposed primary and secondary mirrors and other components from the MAGNUM telescope.
A turnkey observatory with 6.5-m telescope has been developed for a broad range of science applications. The observatory includes the telescope, mount and enclosure, installed on site and ready for operation. The telescope’s primary mirror is an f/1.25 honeycomb sandwich of borosilicate glass, similar to that of the MMT and Magellan telescopes. The baseline optical design is for a Gregorian Nasmyth focus at f/11. A Gregorian adaptive optics secondary that provides a wide-field focus corrected for ground layer turbulence (0.25 arcsecond images over a 4 arcminute field) as well as a narrow-field diffraction-limited focus is optional. Another option is a corrected f/5 focus with a 1° field. The observatory, built by partners from academia and industry with extensive experience, can be delivered within five years at a fixed price.
The Daniel K. Inouye Solar Telescope (DKIST) is a 4-meter aperture, off-axis, Gregorian configuration, solar telescope currently under construction on the top of Haleakela on the island of Maui, Hawaii1. When completed, DKIST will be the world’s largest solar telescope.
The optical performance of the telescope will depend on the accurate alignment of its mirrors. During Integration Testing and Commissioning (IT&C), mirrors will be installed and aligned sequentially. The alignment will be verified by measuring the wavefront progressively at different focus locations using starlight at night with a custom-designed wavefront measurement system (WMS) that consists of a Shack-Hartmann wavefront sensor. In this paper, we will present the optical design of the WMS. We will discuss the testing and calibration process of the as-built WMS in the lab and demonstrate the final in-lab performance.
KEYWORDS: Solar telescopes, Systems engineering, Telescopes, Visualization, Astronomy, Geographic information systems, Coating, Optical alignment, Wavefronts, Systems modeling
The Daniel K. Inouye Solar Telescope (DKIST) has been in its construction phase since 2010, anticipating the onset of the integration, test, and commissioning (IT&C) phase in early 2017, and the commencement of science verification in 2019. The works on Haleakala are progressing at a phenomenal rate and many of the various subsystems are either through or about to enter their Factory (or Laboratory) acceptance. The delays in obtaining site planning permissions, while a serious issue for Project Management, has allowed the sub-systems to develop well ahead of their required delivery to site. We have benefited from the knowledge that many sub-systems will be on site and ready for integration well before affecting the critical path. Opportunities have been presented for additional laboratory/factory testing which, while not free, significantly reduce the risks of potential delays and rework on site. From the perspective of IT&C this has provided an opportunity to develop the IT&C plans and schedules free from the pressures of imminent deployment.
In this paper we describe the ongoing planning of the Integration, Testing and Commissioning (IT&C) phase of the project in particular the detailed planning phase that we are currently developing.
The Daniel K. Inouye Solar Telescope (DKIST) is a 4-meter solar telescope under construction at Haleakala, Hawaii. The challenge of the DKIST optical alignment is the off-axis Gregorian configuration based on an Altitude-Azimuth mount, the independently-rotating Coudé platform and the large number of relay mirrors. This paper describes the optical alignment plan of the complete telescope, including the primary 4.24-m diameter off-axis secondary mirror, the secondary 620 mm diameter off-axis mirror, the transfer optics and the Coudé optics feeding the wavefront correction system and the science instruments. A number of accurate metrology instruments will be used to align the telescope and to reach the performances, including a laser tracker for initial positioning, a theodolite for accurate tilt alignment, a Coordinate Measurement Machine (CMM) arm for local alignment in the Coudé laboratory, and a Shack-Hartmann wavefront sensor to characterize the aberrations by measuring selected target stars. The wavefront will be characterized at the primary focus, the Gregorian focus, the intermediate focus and at the telescope focal plane. The laser tracker will serve also to measure the mirrors positions as function of Altitude angle due to the Telescope Mount Assembly (TMA) structure deflection. This paper describes also the method that will be used to compute the compensating mirrors shift and tilt needed to correct the residual aberrations and position of the focal plane.
The Daniel K. Inouye Solar Telescope (DKIST), formerly the Advanced Technology Solar Telescope (ATST), has
been in its construction phase since 2010, anticipating the onset of the integration, test, and commissioning (IT&C)
phase late in 2016, and the commencement of science verification in early 2019. In this paper we describe the
planning of the Integration, Testing and Commissioning (IT&C) phase of the project.
EOS Technologies has been commissioned to design and build a unique 2.4m astronomical telescope for the Magdalena
Ridge Observatory. This telescope utilizes a high quality primary mirror and cell from a now decommissioned military
application. This paper describes the project and gives an overview of the telescope design.
The Magdalena Ridge Observatory (MRO) 2.4 meter telescope will be primarily utilized to observe, track, and
characterize solar system astronomical targets, Earth satellites, space vehicles, and terrestrial military targets. The
telescope's rapid tracking (slew rates are 10o/sec) will allow it to move to any target and acquire data within one minute
of receipt of notice. In this way, the telescope will be used to capitalize on targets of opportunity that occur in asteroid
studies (e.g., Near Earth Objects) and in astrophysics, such as gamma ray bursts and other transient phenomena. Planned
instrumentation includes a CCD imager, and a low-resolution, wide-band Visible/IR spectrograph (Ryan et al. 2002).
Both of these instruments will facilitate characterization studies of asteroids and space objects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.