SHARK-NIR is an instrument which provides direct imaging, coronagraphic imaging, dual band imaging and low resolution spectroscopy in Y, J and H bands, taking advantage of the outstanding performance of the Large Binocular Telescope AO systems. Binocular observations will be provided used in combination with SHARK-VIS (operating in V band) and LMIRCam of LBTI (operating from K to M bands), in a way to exploit coronagraphic simultaneous observations in three different wavelengths.
A wide variety of coronagraphic techniques have been implemented in SHARK-NIR, ranging from conventional ones such as the Gaussian Lyot, to others quite robust to misalignments such as the Shaped Pupil, to eventually techniques more demanding in term of stability during the observation, as the Four Quadrant; the latter is giving in theory and simulations outstanding contrast, and it is supported in term of stability by the SHARK-NIR internal fast tip-tilt loop and local NCPA correction, which should ensure the necessary stability allowing this technique to operate at its best.
The main science case is of course exoplanets search and characterization and young stellar systems, jets and disks characterization, although the LBT AO extreme performance, allowing to reach excellent correction even at very faint magnitudes, may open to science previously difficult to be achieved, as for example AGN and QSO morphological studies.
The institutes participating to the SHARK-NIR consortium which designed and built the instrument are Istituto Nazionale di Astro Fisica (INAF, Italy), the Max Planck Institute for Astronomy (MPIA, Heidelberg, Germany) and University of Arizona/Steward Observatory (UoA/SO, Tucson, Az, USA). We report here about the SHARK-NIR status, that should achieve first light at LBT before the end of 2022.ELT-HARMONI is the first light visible and near-IR integral field spectrograph (IFS) for the ELT. It covers a large spectral range from 450nm to 2450nm with resolving powers from 3500 to 18000 and spatial sampling from 60mas to 4mas. It can operate in two Adaptive Optics modes - SCAO (including a High Contrast capability) and LTAO - or with NOAO. The project is preparing for Final Design Reviews.
The High Contrast Module (HCM) will allow HARMONI to perform direct imaging and spectral analysis of exoplanets up to 106 times fainter than their host star. Quasi-static aberrations are a limiting factor and must be calibrated as close as possible to the focal plane masks to reach the specified contrast. A Zernike sensor for Extremely Low-level Differential Aberrations (ZELDA) will be used in real-time and closed-loop operation at 0.1Hz frequency for this purpose. Unlike a Shack-Hartmann, the ZELDA wavefront sensor is sensitive to Island and low-wind effects. The ZELDA sensor has already been tested on VLT-SPHERE1 and will be used in other instruments. Our objective is to adapt this sensor to the specific case of HARMONI.
A ZELDA prototype is being both simulated and experimentally tested at IPAG. Its nanometric precision has first been checked in 2020 in the case of slowly evolving, small wavefront errors, and without dispersion nor turbulence residuals. On this experimental basis, we address the performance of the sensor under realistic operational conditions including residuals, mis-centring, dispersion, sensitivity, etc. Atmospheric refraction residuals were introduced by the use of a prism, and turbulence was introduced by a spatial light modulator which is also used to minimise wavefront residuals in a closed loop in the observing conditions expected with HARMONI.Initially proposed as an instrument covering also the K-band, the current design foresees a camera working from Y to H bands, exploiting in this way the synergy with other LBT instruments such as LBTI, which is actually covering wavelengths greater than L' band, and it will be soon upgraded to work also in K band. SHARK-NIR has been undergoing the conceptual design review at the end of 2015 and it has been approved to proceed to the final design phase, receiving the green light for successive construction and installation at LBT.
The current design is significantly more flexible than the previous one, having an additional intermediate pupil plane that will allow the usage of coronagraphic techniques very efficient in term of contrast and vicinity to the star, increasing the instrument coronagraphic performance. The latter is necessary to properly exploit the search of giant exo-planets, which is the main science case and the driver for the technical choices of SHARK-NIR. We also emphasize that the LBT AO SOUL upgrade will further improve the AO performance, making possible to extend the exo-planet search to target fainter than normally achieved by other 8-m class telescopes, and opening in this way to other very interesting scientific scenarios, such as the characterization of AGN and Quasars (normally too faint to be observed) and increasing considerably the sample of disks and jets to be studied.
Finally, we emphasize that SHARK-NIR will offer XAO direct imaging capability on a FoV of about 15"x15", and a simple coronagraphic spectroscopic mode offering spectral resolution ranging from few hundreds to few thousands. This article presents the current instrument design, together with the milestones for its installation at LBT.
We present in the following the MICADO-MAORY SCAO specifications, the current SCAO prototyping activities at LESIA for E-ELT scale pyramid wavefront sensor (WFS) and real-time computer (RTC), our activities on end-to-end AO simulations and the current preliminary design of SCAO subsystems. We finish by presenting the implementation and current design studies for the high-contrast imaging mode of MICADO, which will make use of the SCAO correction offered to the instrument.
View contact details