Compressive sensing has been used to demonstrate scene reconstruction and source localization in a wide variety of devices. To date, optical compressive sensors have not been able to achieve significant volume reduction relative to conventional optics of equivalent angular resolution. Here, we adapt silicon-photonic optical phased array technology to demonstrate, to our knowledge, the first application of compressive imaging in a photonicintegrated device. Our novel sensor consists of an 8 × 8 grid of grating couplers with a spacing of 100 μm. Path-matched waveguides route to a single multimode interferometer (MMI), which mixes and randomizes the signals into 64 outputs to be used for compressed sensing. Our device is fully passive, having no need for phase shifters, as measurement matrix calibration makes the measurements robust to phase errors. For testing, we use an Amplified Spontaneous Emission (ASE) source with a bandwidth of 40 nm, centered at 1545 nm. We demonstrate simultaneous multi-point (2 sources demonstrated in this work) brightness recovery and localization with better than 10 arcsecond precision in a sub-millimeter thick form-factor. We achieve a single source recovery rate higher than 99.9% using 10 of the 64 outputs, and a 90% recovery rate with only 6 outputs, 10 times fewer than the 64 needed for conventional imaging. This planar optical phased array compressive sensor is well-suited for imaging sparse scenes in applications constrained by form factor, volume, or high-cost detectors, with the potential to revolutionize endoscopy, beam locators, and LIDAR.
KEYWORDS: James Webb Space Telescope, Data processing, Image processing, Human-computer interaction, Exoplanets, Planets, Point spread functions, Control systems, Coronagraphy, Environmental sensing
The JamesWebb Space Telescope (JWST) will probe circumstellar environments at an unprecedented sensitivity. However, the performance of high-contrast imaging instruments is limited by the residual light from the star at close separations (<2-3"), where the incidence of exoplanets increases rapidly. There is currently no solution to get rid of the residual starlight down to the photon noise level at those separations, which may prevent some crucial discoveries. JWST's launch is planned for October 2021 with a planned baseline science mission lifetime of only five years. Thus, it is crucial to start developing a solution to this problem before its launch. We are investigating an innovative approach of post-processing built on a Bayesian framework that provides a more robust determination of faint astrophysical structures around a bright source. This approach uses a model of high-contrast imaging instrument that takes advantage of prior information, such as data from wavefront sensing (WFS) operations on JWST, to estimate simultaneously instrumental aberrations and the circumstellar environment. With this approach, our goal is to further improve the contrast gain over the contrast that can be achieved with JWST instruments, starting with NIRCam direct imaging and coronagraphic imaging. This work will pave the way for the future space-based high-contrast imaging instruments such as the Nancy Grace Roman Space Telescope_ Coronagraph Instrument (Roman CGI). This technique will be crucial to make the best use of the telemetry data that will be collected during the CGI operations.
We present a revision to the astrometric calibration of the Gemini Planet Imager (GPI), an instrument designed to achieve the high contrast at small angular separations necessary to image substellar and planetary-mass companions around nearby, young stars. We identified several issues with the GPI data reduction pipeline (DRP) that significantly affected the determination of the angle of north in reduced GPI images. As well as introducing a small error in position angle measurements for targets observed at small zenith distances, this error led to a significant error in the previous astrometric calibration that has affected all subsequent astrometric measurements. We present a detailed description of these issues and how they were corrected. We reduced GPI observations of calibration binaries taken periodically since the instrument was commissioned in 2014 using an updated version of the DRP. These measurements were compared to observations obtained with the NIRC2 instrument on Keck II, an instrument with an excellent astrometric calibration, allowing us to derive an updated plate scale and north offset angle for GPI. This revised astrometric calibration should be used to calibrate all measurements obtained with GPI for the purposes of precision astrometry.
An explanation for the origin of asymmetry along the preferential axis of the point spread function (PSF) of an AO system is developed. When phase errors from high-altitude turbulence scintillate due to Fresnel propagation, wavefront amplitude errors may be spatially offset from residual phase errors. These correlated errors appear as asymmetry in the image plane under the Fraunhofer condition. In an analytic model with an open-loop AO system, the strength of the asymmetry is calculated for a single mode of phase aberration, which generalizes to two dimensions under a Fourier decomposition of the complex illumination. Other parameters included are the spatial offset of the AO correction, which is the wind velocity in the frozen flow regime multiplied by the effective AO time delay and propagation distance or altitude of the turbulent layer. In this model, the asymmetry is strongest when the wind is slow and nearest to the coronagraphic mask when the turbulent layer is far away, such as when the telescope is pointing low toward the horizon. A great emphasis is made about the fact that the brighter asymmetric lobe of the PSF points in the opposite direction as the wind, which is consistent analytically with the clarification that the image plane electric field distribution is actually the inverse Fourier transform of the aperture plane. Validation of this understanding is made with observations taken from the Gemini Planet Imager, as well as being reproducible in end-to-end AO simulations.
The Gemini Planet Imager Exoplanet Survey (GPIES) is a multiyear direct imaging survey of 600 stars to discover and characterize young Jovian exoplanets and their environments. We have developed an automated data architecture to process and index all data related to the survey uniformly. An automated and flexible data processing framework, which we term the Data Cruncher, combines multiple data reduction pipelines (DRPs) together to process all spectroscopic, polarimetric, and calibration data taken with GPIES. With no human intervention, fully reduced and calibrated data products are available less than an hour after the data are taken to expedite follow up on potential objects of interest. The Data Cruncher can run on a supercomputer to reprocess all GPIES data in a single day as improvements are made to our DRPs. A backend MySQL database indexes all files, which are synced to the cloud, and a front-end web server allows for easy browsing of all files associated with GPIES. To help observers, quicklook displays show reduced data as they are processed in real time, and chatbots on Slack post observing information as well as reduced data products. Together, the GPIES automated data processing architecture reduces our workload, provides real-time data reduction, optimizes our observing strategy, and maintains a homogeneously reduced dataset to study planet occurrence and instrument performance.
We present improvements to the wavelength calibration for the lenslet-based Integral Field Spectrograph (IFS), that serves as the science instrument for the Gemini Planet Imager (GPI). The GPI IFS features a 2.7”×2.7” field of view and a 190 x 190 lenslet array (14.1 mas/lenslet) with spectral resolving power ranging from R ~ 35 to 78. A unique wavelength solution is determined for each lenslet characterized by a two-dimensional position, an n-dimensional polynomial describing the spectral dispersion, and the rotation of the spectrum with respect to the detector axis. We investigate the non-linearity of the spectral dispersion across all Y, J, H, and K bands through both on-sky arc lamp images and simulated IFS images using a model of the optical path. Additionally, the 10-hole non-redundant masking mode on GPI provides an alternative measure of wavelength dispersion within a datacube by cross-correlating reference PSFs with science images. This approach can be used to confirm deviations from linear dispersion in the reduced datacubes. We find that the inclusion of a quadratic term provides a factor of 10 improvement in wavelength solution accuracy over the linear solution and is necessary to achieve uncertainties of a few hundredths of a pixel in J band to a few thousands of a pixel in the K bands. This corresponds to a wavelength uncertainty of ~ 0.2 nm across all filters.
The Gemini Planet Imager has been successfully obtaining images and spectra of exoplanets, brown dwarfs, and debris and protoplanetary circumstellar disks using its integral field spectrograph and polarimeter. GPI observations are transformed from raw data into high-quality astrometrically and photometrically calibrated datacubes using the GPI Data Reduction Pipeline, an open-source software framework continuously developed by our team and available to the community. It uses a flexible system of reduction recipes composed of individual primitive steps, allowing substantial customization of processing depending upon science goals. This paper provides a broad overview of the GPI pipeline, summarizes key lessons learned, and describes improved calibration methods and new capabilities available in the latest version. Enhanced automation better supports observations at the telescope with streamlined and rapid data processing, for instance through real-time assessments of contrast performance and more automated calibration file processing. We have also incorporated the GPI Data Reduction Pipeline as one component in a larger automated data system to support the GPI Exoplanet Survey campaign, while retaining its flexibility and stand-alone capabilities to support the broader GPI observer community. Several accompanying papers describe in more detail specific aspects of the calibration of GPI data in both spectral and polarimetric modes.
The James Webb Space Telescope’s Near InfraRed Imager and Slitless Spectrograph (NIRISS) contains a 7-hole non-redundant mask (NRM) in its pupil. NIRISS’s Aperture Masking Interferometry (AMI) mode is useful both for science as well as wavefront sensing. In-focus science detector NRM and full pupil images of unresolved stars can be used to measure the wavefront without any dedicated wavefront sensing hardware or any moving mirrors. Using routine science operational sequences, these images can be taken before or after any science visit. NRM fringe phases constrain Gerchberg-Saxton phase retrieval to disambiguate the algorithm’s two-fold degeneracy.
We summarize how consecutive masked and unmasked exposures provide enough information to reconstruct a wavefront with up to ∼1-2 rms radians of error. We present our latest progress on using this approach on
laboratory experiments, and discuss those results in the context of contingency for JWST segment phasing. We discuss extending our method to ground-based AO systems and future space telescopes.
KEYWORDS: Point spread functions, Sensors, Interferometry, Planets, James Webb Space Telescope, Exoplanets, Space telescopes, Astronomy, Aerospace engineering, Data modeling
JWST/NIRISS has a non-redundant aperture mask (NRM) for use with its F380M, F430M, F480M and F277W filters. In addition to high-resolution imaging with moderate contrast, the NRM provides better astrometric accuracy over a wide field of view than regular imaging. We investigate the accuracy achievable with the NRM by using an image-plane algorithm to analyze the PSFs of a point source that were obtained at a fixed pixel location with sub-pixel dithers during the second Cryo-Vacuum test campaign of the Integrated Science Instrument Module at NASA’s Goddard Space Flight Center. Astrometry of brown dwarfs with the NRM will be sensitive to the presence of terrestrial planets and can be used to probe the architecture of planetary systems around these objects.
JWST’s Near-Infrared Imager and Slitless Spectrograph (NIRISS) includes an Aperture Masking Interferometry (AMI) mode designed to be used between 2.7μm and 4.8μm. At these wavelengths, it will have the highest angular resolution of any mode on JWST, and, for faint targets, of any existing or planned infrastructure. NIRISS AMI is uniquely suited to detect thermal emission of young massive planets and will permit the characterization of the mid-IR flux of exoplanets discovered by the GPI and SPHERE adaptive optics surveys. It will also directly detect massive planets found by GAIA through astrometric accelerations, providing the first opportunity ever to get both a mass and a flux measurement for non-transiting giant planets. NIRISS AMI will also enable the study of the nuclear environment of AGNs.
KEYWORDS: Image segmentation, James Webb Space Telescope, Point spread functions, Wavefront sensors, Space telescopes, Telescopes, Mirrors, Sensors, Cameras, Wavefronts
We present several engineering and algorithmic aspects of non-redundant masking (NRM) as they pertain to the James Webb Space Telescope (JWST). NRM's fundamental data structures have multiple uses in wavefront sensing as well in as high resolution imaging. Kernel phases are a full aperture generalization of NRM applicable to moderate and high Strehl ratio images. Eigenphases, the complement to kernel phases, provide wavefront sensing with single in-focus images. Thus this set of phases is relevant to wavefront sensing with routine science images on any Nyquist-sampled science camera on JWST. We attempt to organize these apparently diverse aspects of such Fizeau interferometry into an inter-related picture in order to facilitate their development and potential use on JWST and future space telescopes.
The Gemini Planet Imager (GPI) is a facility extreme-AO high-contrast instrument – optimized solely for study of faint companions – on the Gemini telescope. It combines a high-order MEMS AO system (1493 active actuators), an apodized pupil Lyot coronagraph, a high-accuracy IR post-coronagraph wavefront sensor, and a near-infrared integral field spectrograph. GPI incorporates several other novel features such as ultra-high quality optics, a spatially-filtered wavefront sensor, and new calibration techniques. GPI had first light in November 2013. This paper presnets results of first-light and performance verification and optimization and shows early science results including extrasolar planet spectra and polarimetric detection of the HR4696A disk. GPI is now achieving contrasts approaching 10-6 at 0.5” in 30 minute exposures.
KEYWORDS: Point spread functions, Data modeling, Sensors, James Webb Space Telescope, Capacitance, Infrared telescopes, Visibility, Phase measurement, Interferometry, Space telescopes
The James Webb Space Telescope (JWST) Near IR Imager and Slitless Spectrograph (NIRISS) has a seven hole non-redundant mask (NRM) in its pupil. The interferometric resolution obtained with the NRM provides a reliable measure of the magnification, position, and distribution of the PSF. The NRM image is Nyquist sampled at 4μm and operates with medium-band filters F380M, F430M, and F480M on NIRISS. We discuss cryovac CV1RR early NRM test data on the instrument. An image-plane, point-source model serves as a predictive tool for the NRM PSF, whose fine scale features' relative intensity can be used to measure detector non-linearities and determine its plate scale and rotation. We present a conservative estimate of NRM's wide-field astrometric performance. We present an analysis of the NIRISS plate scale and detector response as well as a prediction for NRM on-sky performance, taking into account measured intrapixel sensitivities, at fields, and detector linearity corrections.
The Gemini Planet Imager (GPI) is a new facility instrument for the Gemini Observatory designed to provide direct detection and characterization of planets and debris disks around stars in the solar neighborhood. In addition to its extreme adaptive optics and coronagraphic systems which give access to high angular resolution and high-contrast imaging capabilities, GPI contains an integral field spectrograph providing low resolution spectroscopy across five bands between 0.95 and 2.5 μm. This paper describes the sequence of processing steps required for the spectro-photometric calibration of GPI science data, and the necessary calibration files. Based on calibration observations of the white dwarf HD 8049 B we estimate that the systematic error in spectra extracted from GPI observations is less than 5%. The flux ratio of the occulted star and fiducial satellite spots within coronagraphic GPI observations, required to estimate the magnitude difference between a target and any resolved companions, was measured in the H-band to be ∆m = 9.23 ± 0.06 in laboratory measurements and
∆m = 9.39 ± 0.11 using on-sky observations. Laboratory measurements for the Y, J , K1 and K2 filters are also presented. The total throughput of GPI, Gemini South and the atmosphere of the Earth was also measured in each photometric passband, with a typical throughput in H-band of 18% in the non-coronagraphic mode, with some variation observed over the six-month period for which observations were available. We also report ongoing development and improvement of the data cube extraction algorithm.
The Gemini Planet Imager (GPI) combines extreme adaptive optics, an integral field spectrograph, and a high performance coronagraph to directly image extrasolar planets in the near-infrared. Because the coronagraph blocks most of the light from the star, it prevents the properties of the host star from being measured directly. Instead, satellite spots, which are created by diffraction from a square grid in the pupil plane, can be used to locate the star and extract its spectrum. We describe the techniques implemented into the GPI Data Reduction Pipeline to measure the properties of the satellite spots and discuss the precision of the reconstructed astrometry and spectrophotometry of the occulted star. We find the astrometric precision of the satellite spots in an H-band datacube to be 0.05 pixels and is best when individual satellite spots have a signal to noise ratio (SNR) of > 20. In regards to satellite spot spectrophotometry, we find that the total flux from the satellite spots is stable to
~7% and scales linearly with central star brightness and that the shape of the satellite spot spectrum varies on
the 2% level.
The Gemini Planet Imager (GPI) Extreme Adaptive Optics Coronograph contains an interferometric mode: a 10-hole non-redundant mask (NRM) in its pupil wheel. GPI operates at Y, J, H, and K bands, using an integral field unit spectrograph (IFS) to obtain spectral data at every image pixel. NRM on GPI is capable of imaging with a half resolution element inner working angle at moderate contrast, probing the region behind the coronagraphic spot. The fine features of the NRM PSF can provide a reliable check on the plate scale, while also acting as an attenuator for spectral standard calibrators that would otherwise saturate the full pupil. NRM commissioning data provides details about wavefront error in the optics as well as operations of adaptive optics control without pointing control from the calibration system. We compare lab and on-sky results to evaluate systematic instrument properties and examine the stability data in consecutive exposures. We discuss early on-sky performance, comparing images from integration and tests with the first on-sky images, and demonstrate resolving a known binary. We discuss the status of NRM and implications for future science with this mode.
The Gemini Planet Imager (GPI) has as its science instrument an infrared integral field spectrograph/polarimeter (IFS). Integral field spectrographs are scientificially powerful but require sophisticated data reduction systems. For GPI to achieve its scientific goals of exoplanet and disk characterization, IFS data must be reconstructed into high quality astrometrically and photometrically accurate datacubes in both spectral and polarization modes, via flexible software that is usable by the broad Gemini community. The data reduction pipeline developed by the GPI instrument team to meet these needs is now publicly available following GPI’s commissioning.
This paper, the first of a series, provides a broad overview of GPI data reduction, summarizes key steps, and presents the overall software framework and implementation. Subsequent papers describe in more detail the algorithms necessary for calibrating GPI data. The GPI data reduction pipeline is open source, available from planetimager.org, and will continue to be enhanced throughout the life of the instrument. It implements an extensive suite of task primitives that can be assembled into reduction recipes to produce calibrated datasets ready for scientific analysis. Angular, spectral, and polarimetric differential imaging are supported. Graphical tools automate the production and editing of recipes, an integrated calibration database manages reference files, and an interactive data viewer customized for high contrast imaging allows for exploration and manipulation of data.
The James Webb Space Telescope (JWST) is equipped with a 7-hole non-redundant mask on the Near IR Imager and Slitless Spectrograph (NIRISS). Flat field error is likely to limit the contrast of this imaging mode. This can be mitigated by placing calibrator and target on the same pixel. Image plane modeling, using measured intra-pixel sensitivities, enables us to determine the target and calibrator placements to a fraction of a pixel. This is helpful given the barely Nyquist pixel scale on NIRISS and non-uniform sensitivity within the pixel. We discuss the effects of coarse sampling and varied intra-pixel response across the detector on the contrast of JWST AMI. We additionally explore the combination of the sub-Nyquist sampled F277W filter with the mask. Using the F277W filter with NRM will expand the planet formation science possible for JWST.
The Gemini Planet Imager (GPI) Extreme Adaptive Optics Coronagraph (ExAOC) possesses a non-redundant mask (NRM) mode that is enabled by placing a 10-hole mask in the plane of the apodizer. GPI uses an integral field spectrograph (IFS) operating at Y, J, H, and K. The raw IFS data images are assembled into spectral data cubes by the data pipeline according to the most recent wavelength solution. Accurate knowledge of the wavelength of each slice of data in this hyperspectral cube is essential. On GPI, NRM will be used to probe planet- forming regions and enable the discovery of young companions at separations smaller than what is achievable using the standard coronagraphic mode. We show that NRM data can also provide a reliable independent and precise check on the assumed wavelength calibration of the cubes. This data also provides a reliable measure of pupil geometry, which can feed advanced coronagraphic data analysis techniques. We present a wavelength calibration procedure using images from GPI during its integration and tests. We demonstrate improvements of the instrument and data pipeline between September 2012 and July 2013, comparing integration and test data taken in each of these dates. We additionally report on the first measured closure phases calculated with GPI's NRM using two different methods, a Fourier-plane approach and an image-plane approach. The performance of NRM during integration and test is indicative of the contrast it will achieve on sky.
High contrast imaging can use pupil apodizers to suppress diffracted starlight from a bright source in order to observe its environs. Metallic half-tone dot transmissive apodizers were developed for the Gemini Planet Imager (GPI) and ESO SPHERE coronagraphs for use in the near-IR. Dot sizes on the scale of the wavelength of the light often result in unexpected variations in the optical transmission vs. superficial dot density relation. We measured 5 and 10 micron half-tone microdot screens' transmissions between 550 -1050 nm to prepare to fabricate apodizations that mitigate diffraction by segments gaps and spiders on future large space telescopes. We utilized slow test beams (f/40, f/80) to estimate the on-axis (far-field, or zero-order) transmission of test patches using a Fourier Transform Spectrograph on Beamline U10B at Brookhaven National Laboratory's National Synchrotron Light Source (BNL NSLS). We also modified our previous GPI IR characterization hardware and methods for this experiment. Our measurements show an internal consistency of 0.1% in transmission, a factor of 5 better than our near-IR GPI work on the NSLS U4IR beamline. The systematics of the set-up appeared to limit the absolute calibration for our f/40 data on the 50-patch, maximum Optical Density 3 (OD3), sample. Credible measurements of transmissions down to about 3% transmission were achieved for this sample. Future work on apodizers for obstructed and segmented primary mirror coronagraphs will require configurations that mimic the intended diffractive configurations closely in order to tune apodizer fabrication to any particular application, and measure chromatic effects in representative diffractive regimes. Further experimental refinements are needed to measure the densest test patches which possess transmissions less than a few percent. The new NSLS-II should provide much greater spectral stability of its synchrotron beam, which will improve measurement accuracy and reduce systematics.
The Aperture Masked Interferometry (AMI) mode on JWST-NIRISS is implemented as a 7-hole, 15% throughput, non-redundant mask (NRM) that operates with 5-8% bandwidth filters at 3.8, 4.3, and 4.8 microns. We present refined estimates of AMI's expected point-source contrast, using realizations of noise matched to JWST pointing requirements, NIRISS detector noise, and Rev-V JWST wavefront error models for the telescope and instrument. We describe our point-source binary data reduction algorithm, which we use as a standardized method to compare different observational strategies. For a 7.5 magnitude star we report a 10-a detection at between
8.7 and 9.2 magnitudes of contrast between 100 mas to 400 mas respectively, using closure phases and squared visibilities in the absence of bad pixels, but with various other noise sources. With 3% of the pixels unusable, the expected contrast drops by about 0.5 magnitudes. AMI should be able to reach targets as bright as M=5. There will be significant overlap between Gemini-GPI and ESO-SPHERE targets and AMI's search space, and a complementarity with NIRCam's coronagraph. We also illustrate synthesis imaging with AMI, demonstrating an imaging dynamic range of 25 at 100 mas scales. We tailor existing radio interferometric methods to retrieve a faint bar across a bright nucleus, and explain the similarities to synthesis imaging at radio wavelengths. Modest contrast observations of dusty accretion flows around AGNs will be feasible for NIRISS AMI. We show our early results of image-plane deconvolution as well. Finally, we report progress on an NRM-inspired approach to mitigate mission-level risk associated with JWST's specialized wavefront sensing hardware. By combining narrow band and medium band Nyquist-sampled images taken with a science camera we can sense JWST primary mirror segment tip-tilt to lOmas, and piston to a few nm. We can sense inter-segment piston errors of up to 5 coherence lengths of the broadest bandpass filter used ( 250-500 0m depending on the filters). Our approach scales well with an increasing number of segments, which makes it relevant for future segmented-primary space missions.
The Gemini Planet Imager (GPI) is an extreme AO coronagraphic integral field unit YJHK spectrograph destined
for first light on the 8m Gemini South telescope in 2011. GPI fields a 1500 channel AO system feeding an
apodized pupil Lyot coronagraph, and a nIR non-common-path slow wavefront sensor. It targets detection and
characterizion of relatively young (<2GYr), self luminous planets up to 10 million times as faint as their primary
star. We present the coronagraph subsystem's in-lab performance, and describe the studies required to specify
and fabricate the coronagraph. Coronagraphic pupil apodization is implemented with metallic half-tone screens
on glass, and the focal plane occulters are deep reactive ion etched holes in optically polished silicon mirrors. Our
JH testbed achieves H-band contrast below a million at separations above 5 resolution elements, without using
an AO system. We present an overview of the coronagraphic masks and our testbed coronagraphic data. We
also demonstrate the performance of an astrometric and photometric grid that enables coronagraphic astrometry
relative to the primary star in every exposure, a proven technique that has yielded on-sky precision of the order
of a milliarsecond.
High contrast imaging sometimes uses apodized masks in coronagraphs to suppress diffracted starlight from
a bright source in order to observe its environs. Continuously graded opacity material and metallic half-tone
dots are two possible apodizers fabrication techniques. In the latter approach if dot sizes are comparable to the
wavelength of the light, surface plasmon effects can complicate the optical density (OD) vs. superficial dot density
relation. OD can also be a complicated function of wavelength. We measured half-tone microdot screens' and
continuous materials' transmissions. Our set-up replicated the f/ 64 optical configuration of the Gemini Planet
Imager's Apodized Pupil Lyot Coronagraph pupil plane, where we plan to place our pupil plane masks. Our
half-tone samples were fabricated with 2, 5, and 10 micron dot sizes, our continuous greyscale was High Energy
Electron Beam Sensitive (HEBS) glass (Canyon Materials Inc.). We present optical density (OD) vs. wavelength
curves for our half-tone and continuous greyscale samples 1.1 - 2.5 μm wavelength range. Direct measurements
of the beam intensity in the far field using a Fourier Transform Infrared Spectrograph on Beamline U4IR at
Brookhaven National Laboratory's National Synchrotron Light Source (NSLS) provided transmission spectra of
test patches and apodizers. We report the on-axis IR transmission spectra through screens composed of metallic
dots that are comparable in size with the wavelength of the light used, over a range of optical densities. We also
measured departures from simple theory describing the array of satellite spots created by thin periodic grids in
the pupil of the system. Such spots are used for photometry and astrometry in coronagraphic situations. Our
results pertain to both ground and space based coronagraphs that use spatially variable attenuation, typically
in focal plane or pupil plane masks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.