KEYWORDS: Planets, Signal to noise ratio, Point spread functions, Exoplanetary science, Stars, Coherence imaging, Telescopes, Electric fields, Coronagraphy, Optical coherence
With the commencement of the development of the Habitable Worlds Observatory, it is imperative that the community has an understanding of (1) the stability requirements for the observatory to inform the design and (2) the gains expected from post-processing to inform observing scenarios and science yield estimates. We demonstrate that a previously developed, photon-efficient dark zone maintenance (DZM) algorithm that corrects quasi-static wavefront error drifts using only science images is compatible with traditional post-processing techniques. Further, we augment the DZM algorithm to estimate the coherent and incoherent light separately and introduce three novel post-processing techniques that leverage the concurrent estimation of coherent and incoherent light. With the DZM algorithm implemented on the High-contrast imager for Complex Aperture Telescopes testbed at the Space Telescope Science Institute, artificial drifts are injected as a random walk on a set of deformable mirrors and are corrected with DZM. We present an injected fake planet recovered in post-processing using a variety of techniques, such as angular differential imaging (ADI), and three additional techniques: incoherent accumulated imaging, software-based coherent differential imaging, and coherent reference differential imaging. All post-processing techniques can recover an injected planet at the same contrast level as the dark zone background contrast (∼8×10−8), and the ADI technique is shown to recover a 4×10−8 planet in a 8×10−8 dark zone. For a space-based observatory, this would mean that, if the instrument can reach a contrast level, we can maintain it and recover a planet that is undetectable in a single frame.
Exoplanet imaging uses coronagraphs to block out the bright light from a star, allowing astronomers to observe the much fainter light from planets orbiting the star. However, these instruments are heavily impacted by small aberrations in the wavefront and require the minimization of starlight residuals directly in the focal plane. Stateof-the art wavefront control methods suffer from errors in the underlying physical models, and often require several iterations to minimize the intensity in the dark hole, limiting performance and reducing effective observation time. This study aims at developing a data-driven method to create a dark hole in post-coronagraphic images. For this purpose, we leverage the model-free capabilities of reinforcement learning to train an agent to learn a control strategy directly from phase diversity images acquired around the focal plane. Initial findings demonstrate successful aberration correction in non-coronagraphic simulations and promising results for dark hole creation in post-coronagraphic scenarios. These results highlight the potential of model-free reinforcement learning for dark-hole creation, justifying further investigation and eventually experimental validation on a dedicated testbed.
The spectroscopic study of mature giant planets and low mass planets (Neptune-like, Earth-like) requires instruments capable of achieving very high contrasts (10−10 − 10−11) at short angular separations. To achieve such high performance on a real instrument, many limitations must be overcome: complex component defects (coronagraph, deformable mirror), optical aberrations and scattering, mechanical vibrations and drifts, polarization effects, etc. To study the overall impact on a complete system representative of high contrast instruments, we have developed a test bench at Paris Observatory, called THD2. In this paper, we focus on the polarization effects that are present on the bench which creates differential aberrations between the two linear polarization states. We compare the recorded beam positions of the two polarization states with the predicted from the Goos-H¨anchen and Imbert-Fedorov effects, both of which cause spatial shifts and angular deviations of the beam, longitudinal and transverse respectively. Although these effects have already been studied in the literature from the optical and quantum mechanical points of view, their measurement and impact on a complete optical bench are rather rare, although they are crucial for high-contrast instruments. After describing the Goos-H¨anchen and Imbert-Fedorov effects and estimating their amplitude on the THD2 bench, we present the protocol we used to measure these effects of polarization on the light beam. We compare predictions and measurements and we conclude on the most limiting elements on our bench polarization-wise.
We study a mid-order wavefront sensor (MOWFS) to address fine cophasing errors in exoplanet imaging with future large segmented aperture space telescopes. Observing Earth analogs around Sun-like stars requires contrasts down to 10−10 in visible light. One promising solution consists of producing a high-contrast dark zone in the image of an observed star. In a space observatory, this dark region will be altered by several effects, and among them, the small misalignments of the telescope mirror segments due to fine thermo-mechanical drifts. To correct for these errors in real time, we investigate a wavefront control loop based on a MOWFS with a Zernike sensor. Such a MOWFS was installed on the high-contrast imager for complex aperture telescopes (HiCAT) testbed in Baltimore in June 2023. The bench uses a 37-segment Iris-AO deformable mirror to mimic telescope segmentation and some wavefront control strategies to produce a dark zone with such an aperture. In this contribution, we first use the MOWFS to characterize the Iris-AO segment discretization steps. For the central segment, we find a minimal step of 125 ±31 pm. This result will help us to assess the contribution of the Iris-AO DM on the contrast in HiCAT. We then determine the detection limits of the MOWFS, estimating wavefront error amplitudes of 119 and 102 pm for 10 s and 1 min exposure time with a SNR of 3. These values inform us about the measurement capabilities of our wavefront sensor on the testbed. These preliminary results will be useful to provide insights on metrology and stability for exo-Earth observations with the Habitable Worlds Observatory.
This paper presents initial results from the ESA-funded “SUPPPPRESS” project, which aims to develop highperformance liquid-crystal coronagraphs for direct imaging of Earth-like exoplanets in reflected light. The project focuses on addressing the significant challenge of polarization leakage in vector vortex coronagraphs (VVCs). We utilize newly manufactured multi-grating, liquid-crystal VVCs, consisting of a two- or three-element stack of vortex and grating patterns, to reduce this leakage to the 10−10 contrast level. We detail the experimental setups, including calibration techniques with polarization microscopes and Mueller matrix ellipsometers to enhance the direct-write accuracy of the liquid-crystal patterns. The performance testing of these coronagraph masks will be conducted on the THD2 high-contrast imaging testbed in Paris.
We present the final results of the Apodized Pupil Lyot Coronagraph (APLC) on the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed, under NASA’s Strategic Astrophysics Technology program. The HiCAT testbed was developed over the past decade to enable a system-level demonstration of coronagraphy for exoplanet direct imaging with the future Habitable Wolds Observatory. HiCAT includes an active, segmented telescope simulator, a coronagraph, and metrology systems (Low-order and Mid-Order Zernike Wavefront Sensors, and Phase Retrieval camera). These results correspond to an off-axis (un-obscured) configuration, as was envisioned in the 2020 Decadal Survey Recommendations. Narrowband and broadband dark holes are generated using two continuous deformable mirrors (DM) to control high order wavefront aberrations, and low-order drifts can be further stabilized using the LOWFS loop. The APLC apodizers, manufactured using carbon nanotubes, were optimized for broadband performance and include the calibrated geometric aperture. The objectives of this SAT program were organized in three milestones to reach a system-like level demonstration of segmented-aperture coronagraphy, from static component demonstration to system-level demonstration under both natural and artificial disturbances. HiCAT is, to this date, the only testbed facility able to demonstrate high-contrast coronagraphy with a truly segmented aperture, as is required for the Habitable World Observatory, albeit limited to ambient conditions, corresponding to NASA’s Technology Readiness Level (TRL) 4. Results presented here include 6 × 10−8 (90% CI) contrast in 9% bandpass in a 360 deg dark hole with inner and outer working angles of 4.4λ/Dpupil and 11λ/Dpupil. Narrowband contrast (3% bandpass) reaches 2.4 × 10−8 (90% confidence interval). We first explore the open-loop stability of the entire system quantify the baseline testbed performance. Then we present dark hole stabilization using both high-order and low-order loops under both low-order and segment level drifts in narrow and broadband. We compare experimental data with that obtained by the end-to-end HiCAT simulator. We establish that current performance limitations are due to a combination of ambient conditions, detector and deformable mirrors noises (including quantization), and model mismatch.
NASA’s Habitable Worlds Observatory will consist of a segmented telescope and high contrast coronagraph to characterize exoplanets for habitability. Achieving this objective requires an ultra-stable telescope with wavefront stability of picometers in certain critical modes. The NASA funded Ultra-Stable Large Telescope Research and Analysis – Technology Maturation program has matured key component-level technologies in 10 areas spanning an “ultra-stable” architecture, including active components like segment edge sensors, actuators and thermal hardware, passive components like low distortion mirrors and stable structures, and supporting capabilities like precision metrology. This paper will summarize the final results from the four-year ULTRA-TM program, including advancements in performance and/or path-to-flight readiness, TRL/MRL maturation, and recommendations for future work.
KEYWORDS: Wavefronts, Wavefront sensors, Coronagraphy, Simulations, Electric fields, Cameras, Space telescopes, Signal to noise ratio, Exoplanets, Stars, Equipment, Imaging systems
Maintaining wavefront stability while directly imaging exoplanets over long exposure times is an ongoing problem in the field of high-contrast imaging. Robust and efficient high-order wavefront sensing and control systems are required for maintaining wavefront stability to counteract mechanical and thermal instabilities. Dark zone maintenance (DZM) has been proposed to address quasi-static optical aberrations and maintain high levels of contrast for coronagraphic space telescopes. To further experimentally test this approach for future missions, such as the Habitable Worlds Observatory, this paper quantifies the differences between the theoretical closed-loop contrast bounds and DZM performance on the High-contrast Imager for Complex Aperture Telescopes (HiCAT) testbed. The quantification of DZM is achieved by traversing important parameters of the system, specifically the total photon flux entering the aperture of the instrument, ranging from 1.85 × 106 to 1.85 × 108 photons per second, and the wavefront error drift rate, ranging from σdrift= 30−3000 pm/√ iteration, injected via the deformable mirror actuators. This is tested on the HiCAT testbed by injecting random walk drifts using two Boston Micromachines kilo deformable mirrors (DMs). The parameter scan is run on the HiCAT simulator and the HiCAT testbed where the corresponding results are compared to the model-based theoretical contrast bounds to analyze discrepancies. The results indicate an approximate one and a half order of magnitude difference between the theoretical bounds and testbed results.
One of the primary science goals of the Habitable Worlds Observatory (HWO) as defined by the Astro2020 decadal survey is the imaging of the first Earth-like planet around a Sun-like star. A key technology gap towards reaching this goal are the development of ultra-low-noise photon counting detectors capable of measuring the incredibly low count rates coming from these planets which are at contrasts of ∼ 1 × 10−10. Superconducting energyresolving detectors (ERDs) are a promising technology for this purpose as, despite their technological challenges, needing to be cooled below their superconducting transition temperature (< 1K), they have essentially zero read noise, dark current, or clock-induced charge, and can get the wavelength of each incident photon without the use of additional throughput-reducing filters or gratings that spread light over many pixels. The use of these detectors on HWO will not only impact the science of the mission by decreasing the required exposure times for exo-Earth detection and characterization, but also in a wavefront sensing and control context when used for starlight suppression to generate a dark zone. We show simulated results using both an EMCCD and an ERD to “dig a dark zone” demonstrating that ERDs can achieve the same final contrast as an EMCCD in about half of the total time. We also perform a simple case study using an exposure time calculator tool called the Error Budget Software (EBS) to determine the required integration times to detect water for HWO targets of interest using both EMCCDs and ERDs. This shows that once a dark zone is achieved, using an ERD can decrease these exposure times by factors of 1.5–2 depending on the specific host star properties.
The Roman Space Telescope will be a critical mission to demonstrate high-contrast imaging technologies allowing for the characterisation of exoplanets in reflected light. It will demonstrate 10−7 contrast limits or better at 3–9 λ/D separations with active wavefront control for the first time in space. The detection limits for the Coronagraph Instrument are expected to be set by wavefront variations between the science target and the reference star observations. We are investigating methods to use the deformablel mirrors to methodically probe the impact of such variations on the coronagraphic PSF, generating a PSF library during observations of the reference star to optimise the starlight subtraction at post-processing. We are collaborating with STScI to test and validate these methods in lab using the HiCAT tested, a high-contrast imaging lab platform dedicated to system-level developments for future space missions. In this paper, we will present the first applications of these methods on HiCAT.
With the commencement of the development of the Habitable Worlds Observatory, it is imperative that the community has an understanding of (1) the stability requirements for the observatory to inform the design and (2) the gains expected from post-processing to inform observing scenarios and science yield estimates. We demonstrate that a previously developed, photon-efficient dark-zone maintenance (DZM) algorithm, that corrects quasi-static wavefront error drifts by using only science images, is compatible with traditional post-processing techniques. Further, we augment the DZM algorithm to estimate the coherent and incoherent light separately and introduce three novel post-processing techniques that leverage the concurrent estimation of coherent and incoherent light. With the DZM algorithm implemented on the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed at the Space Telescope Science Institute (STScI), artificial drifts are injected as a random walk on a set of deformable mirrors (DMs) and are corrected with DZM. An injected fake planet is recovered in post-processing using a variety of techniques, such as angular differential imaging (ADI), and three novel techniques presented in this paper: incoherent accumulated imaging (IAI), software-based coherent differential imaging (CDI), and coherent reference differential imaging (CoRDI). All post-processing techniques can recover an injected planet at the same contrast level as the dark-zone background contrast (∼ 8 × 10−8), and the ADI technique is shown to recover a 4 × 10−8 planet in a 8 × 10−8 dark zone. For a space-based observatory, this would mean that if the instrument can reach a contrast level, we can maintain it and recover a planet that is undetectable in a single frame.
Future space-based coronagraphs will rely critically on focal-plane wavefront sensing and control with deformable mirrors (DMs) to reach deep contrast by mitigating optical aberrations in the primary beam path. Until now, most focal-plane wavefront control algorithms have been formulated in terms of Jacobian matrices, which encode the predicted effect of each DM actuator on the focal-plane electric field. A disadvantage of these methods is that Jacobian matrices can be cumbersome to compute and manipulate, particularly when the number of DM actuators is large. Recently, we proposed a new class of focal-plane wavefront control algorithms that utilize gradient-based optimization with algorithmic differentiation to compute wavefront control solutions while avoiding the explicit computation and manipulation of Jacobian matrices entirely. In simulations using a coronagraph design for the proposed Large UV/Optical/Infrared Surveyor, we showed that our approach reduces overall CPU time and memory consumption compared to a Jacobian-based algorithm. Here, we expand on these results by implementing the proposed algorithm on the High-contrast Imager for Complex Aperture Telescopes tested at the Space Telescope Science Institute and present initial experimental results, demonstrating contrast suppression capabilities equivalent to Jacobian-based methods.
To reduce the amount of stellar light for exoplanet detection, coronagraphs feature amplitude masks in pupils plane(s) and/or focal plane(s), where a large fraction of photons are stopped -- and generally not used. Here, we give an overview of where potentially useful stellar (and circumstellar) photons are lost. We review existing concepts that use these lost photons, and propose generic strategies to make use of them for various applications. We particularly focus on wavefront sensing applications, but also explore how these photons can be used for calibration measurements, or for additional scientific observations.
We report on experimental stabilization of low-order aberrations on a high-contrast testbed for exoplanet imaging, in up to 10% broadband light under natural and artificial drifts. The measurements are performed with a Zernike wavefront sensor using the light rejected by the focal plane mask of an apodized Lyot coronagraph. We conduct the experiments on the High-contrast imager for Complex Aperture Telescopes testbed, with a segmented aperture and two continuous deformable mirrors. We study several use cases, from the stabilization of a pre-established dark hole to the concurrent combination with focal-plane wavefront sensing in the form of sequential pairwise sensing over several wavelengths.
The phase-apodized-pupil Lyot coronagraph (PAPLC) produces a one-sided dark zone, with, in theory, a 2 λ/D inner working angle at contrasts of 10^-10 and high planet throughput, perfect for future space missions such as the Habitable Worlds Observatory. The two DMs in the wavefront control system serve as the apodizer. We present laboratory results on a segmented telescope pupil in broadband light on the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed. A Zernike wavefront sensor, which uses the light rejected by the coronagraph, simultaneously measures any high-order aberrations. We report on the achieved broadband contrast within a 10% and 20% bandpass, under natural and artificial environmental conditions.
The detection and characterization of Earth-like exoplanets around Sun-like stars is a primary science motivation for the Habitable Worlds Observatory. However, the current best technology is not yet advanced enough to reach the 10−10 contrasts at close angular separations and at the same time remain insensitive to low-order aberrations, as would be required to achieve high-contrast imaging of exo-Earths. Photonic technologies could fill this gap, potentially doubling exo-Earth yield. We review current work on photonic coronagraphs and investigate the potential of hybridized designs which combine both classical coronagraph designs and photonic technologies into a single optical system. We present two possible systems. First, a hybrid solution which splits the field of view spatially such that the photonics handle light within the inner working angle and a conventional coronagraph that suppresses starlight outside it. Second, a hybrid solution where the conventional coronagraph and photonics operate in series, complementing each other and thereby loosening requirements on each subsystem. As photonic technologies continue to advance, a hybrid or fully photonic coronagraph holds great potential for future exoplanet imaging from space.
Looking to the future of exo-Earth imaging from the ground, core technology developments are required in visible Extreme Adaptive Optics (ExAO) to enable the observation of atmospheric features such as oxygen on rocky planets in visible light. UNDERGROUND (Ultra-fast AO techNology Determination for Exoplanet imageRs from the GROUND), a collaboration built in Feb. 2023 at the Optimal Exoplanet Imagers Lorentz Workshop, aims to (1) motivate oxygen detection in Proxima Centauri b and analogs as an informative science case for high-contrast imaging and direct spectroscopy, (2) overview the state of the field with respect to visible exoplanet imagers, and (3) set the instrumental requirements to achieve this goal and identify what key technologies require further development.
The High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed is a segmented aperture coronagraph simulator designed to be a systems level prototype demonstration for the proposed Habitable Worlds Observatory recommended by the 2020 Astronomical Decadal Survey. An important technical component of operating HiCAT is a method of measuring the Wavefront Error (WFE) on the testbed. Here we present our implementation of the differential Optical Transfer Function (dOTF) phase retrieval technique on HiCAT and the WFE calibration experiments we have developed using the technique. We use dOTF to improve the wavefront calibration map of one of HiCAT’s Deformable Mirrors (DMs) as well as to measure low-order Non-Common Path Aberrations (NCPA) between the focal and imaging planes of the coronagraph.
We explore the capabilities of large segmented telescopes with active and adaptive optics, with a particular focus on a system view, which includes use of approaches that are routine for current large ground-based telescopes. Using a physically motivated order-of-magnitude model, we show that continuous control of telescope misalignments using adjustable optics in an exoplanet imaging instrument significantly relaxes stability requirements for the entire observatory. We start with the recent analysis by Nemati et al., (2020, JATIS 6, id. 039002), which asserts that small monolithic mirrors have an engineering advantage over larger segmented mirrors when it comes to obtaining images stable enough for direct exoplanet imaging and characterization, i.e., picometer stability. When we fold these results into our model of closed-loop operations and properly partition engineering challenges by optimizing error budget allocations, we find that even for the most sensitive modes, allowable drifts are actually of the order of nanometer over an hour, well within easily engineered tolerances. While this order-of-magnitude analysis does not include full end-to-end modeling or proper engineering margins, it showcases the importance of considering continuous wavefront sensing and control when discussing the feasibility of future exoplanet missions. We also quantify how large segmented architectures, in spite of appearing more complex at the observatory level, facilitate closed-loop operations due to their large photon collection abilities. We place our work in the context of larger discussions on aperture size that highlight a more fundamental challenge: the deeper uncertainties in performance of an exo-earth characterizing telescope primarily reside in our knowledge of the frequency of exo-earths; the effects of geological age on the resulting atmospheres; and, most importantly, on the likelihood of detectable life arising on such planets. A mission that sets out to establish whether we are alone among the nearby stars must adopt a mission architecture that is resilient against such intrinsic uncertainties: uncertainties that only direct observations can resolve. Large apertures enabled by segmented telescope designs historically have demonstrated such resilience.
Due to the limited number of photons, directly imaging planets requires long integration times with a coronagraphic instrument. The wavefront must be stable on the same time scale, which is often difficult in space due to time-varying wavefront errors from thermal gradients and other mechanical instabilities. We discuss a laboratory demonstration of a photon-efficient dark zone maintenance (DZM) algorithm in the presence of representative wavefront error drifts. The DZM algorithm allows for simultaneous estimation and control while obtaining science images and removes the necessity of slewing to a reference star to regenerate the dark zone mid-observation of a target. The experiments are performed on the high-contrast imager for complex aperture telescopes at the Space Telescope Science Institute. The testbed contains an IrisAO segmented primary surrogate, a pair of continuous Boston Micromachine (BMC) kilo deformable mirrors (DMs), and a Lyot coronagraph. Both types of DMs are used to inject synthetic high-order wavefront aberration drifts into the system, possibly similar to those that would occur on telescope optics in a space observatory, which are then corrected by the BMC DMs via the DZM algorithm. In the presence of BMC, IrisAO, and all DM wavefront error drift, we demonstrate maintenance of the dark zone contrast (5.8−9.8 λ/Dlyot) at monochromatic levels of 8.5×10−8, 2.5×10−8, and 5.9×10−8, respectively. In addition, we show multiwavelength maintenance at a contrast of 7.0×10−7 over a 3% band centered at 650 nm (BMC drift). We demonstrate the potential of adaptive wavefront maintenance methods for future exoplanet imaging missions, and our demonstration significantly advances their readiness.
Laboratory testbeds are an integral part of conducting research and developing technology for high-contrast imaging and extreme adaptive optics. There are a number of laboratory groups around the world that use and develop resources that are imminently required for their operations, such as software and hardware controls. The CAOTIC(Community of Adaptive OpTics and hIgh Contrast testbeds) project is aimed to be a platform for this community to connect, share information, and exchange resources in order to conduct more efficient research in astronomical instrumentation, while also encouraging best practices and strengthening cross-team connections. In these proceedings, we present the goals of the CAOTIC project, our new website, and we focus in particular on a new approach to teaching version control to scientists, which is a cornerstone of successful collaborations in astronomical instrumentation.
We present a novel approach to quantify wavefront stability of large observatories in space, based on the science goals of coronagraph instrument aimed at imaging and characterizing earth-analog candidates. We developed this method in the context of the Astro 2020 recommendation for technology trades studies towards the maturation of a flagship IR\O\UV. We apply this method to quantify the observatory requirements of a series of possible future IR\O\UV mission architectures -primary geometry, coronagraph and wavefront sensor. We discuss similarities and differences between monolithic and segmented architectures. For segmented ones, we highlight the importance of tuning the modal content of primary segments instabilities so they lie as much as possible in the null-space space of the coronagraph.
We present a publicly available software package developed for exploring apodized pupil Lyot coronagraph (APLC) solutions for various telescope architectures. In particular, the package optimizes the apodizer component of the APLC for a given focal-plane mask and Lyot stop geometry to meet a set of constraints (contrast, bandwidth etc.) on the coronagraph intensity in a given focal-plane region (i.e. dark zone). The package combines a high-contrast imaging simulation package (HCIPy) with a third-party mathematical optimizer (Gurobi) to compute the linearly optimized binary mask that maximizes transmission. We provide examples of the application of this toolkit to several different telescope geometries, including the Gemini Planet Imager (GPI) and the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed. Finally, we summarize the results of a preliminary design survey for the case of a ∼6 m aperture off-axis space telescope, as recommended by the 2020 NASA Decadal Survey, exploring APLC solutions for different segment sizes. We then use the Pair-based Analytical model for Segmented Telescope Imaging from Space (PASTIS) to perform a segmented wavefront error tolerancing analysis on these solutions.
We present recent laboratory results demonstrating high-contrast coronagraphy for the future space-based large IR/Optical/Ultraviolet telescope recommended by the Decadal Survey. The High-contrast Imager for Complex Aperture Telescopes (HiCAT) testbed aims to implement a system-level hardware demonstration for segmented aperture coronagraphs with wavefront control. The telescope hardware simulator employs a segmented deformable mirror with 37 hexagonal segments that can be controlled in piston, tip, and tilt. In addition, two continuous deformable mirrors are used for high-order wavefront sensing and control. The low-order sensing subsystem includes a dedicated tip-tilt stage, a coronagraphic target acquisition camera, and a Zernike wavefront sensor that is used to measure and correct low-order aberration drifts. We explore the performance of a segmented aperture coronagraph both in “static” operations (limited by natural drifts and instabilities) and in “dynamic” operations (in the presence of artificial wavefront drifts added to the deformable mirrors), and discuss the estimation and control strategies used to reach and maintain the dark-zone contrast using our low-order wavefront sensing and control. We summarize experimental results that quantify the performance of the testbed in terms of contrast, inner/outer working angle and bandpass, and analyze limiting factors.
KEYWORDS: Signal to noise ratio, Photons, Coronagraphy, Exoplanets, Electron multiplying charge coupled devices, Wavefronts, Space telescopes, Space operations
Directly imaging exoplanets requires long integration times when using a space-based coronagraphic instrument due to the small number of photons. Wavefront stability on the same timescale is of the utmost importance; a difficult feat in the presence of thermal and mechanical instabilities. In this paper, we demonstrate that dark zone maintenance (DZM) functions in the low signal-to-noise (SNR) regime similar to that expected for the Roman Space Telescope (RST) and the “large (∼6 m aperture) infrared/optical/ultraviolet (IR/O/UV) space telescope” recommended by the 2021 decadal survey. We develop low-photon experiments with tunable noise properties to provide a representative extrapolation. The experiments are performed on the High-contrast Imager for Complex Aperture Telescopes (HiCAT) at the Space Telescope Science Institute (STScI). High-order wavefront error drifts are injected using a pair of kilo-deformable mirrors (DMs). The drifts are corrected using the DMs via the DZM algorithm; note that the current limiting factor for the DZM results is the air environment. We show that DZM can maintain a contrast of 5.3 × 10−8 in the presence of DM random walk drift with a low SNR.
We present a segment-level wavefront stability error budget for space telescopes essential for exoplanet detection. We use a detailed finite element model to relate the temperature gradient at the location of the primary mirror to wavefront variations on each of the segment. We apply the PASTIS sensitivity model forward approach to allocate static tolerances in physical units for each segment, and transfer these tolerances to the temporal domain via a model of the WFS&C architecture in combination with a Zernike phase sensor and science camera. We finally estimate the close-loop variance and limiting contrast for the segments’ thermo-mechanical modes.
Future space-based coronagraphs will rely critically on focal-plane wavefront sensing and control with deformable mirrors to reach deep contrast by mitigating optical aberrations in the primary beam path. Until now, most focal-plane wavefront control algorithms have been formulated in terms of Jacobian matrices, which encode the predicted effect of each deformable mirror actuator on the focal-plane electric field. A disadvantage of these methods is that Jacobian matrices can be cumbersome to compute and manipulate, particularly when the number of deformable mirror actuators is large. Recently, we proposed a new class of focal-plane wavefront control algorithms that utilize gradient-based optimization with algorithmic differentiation to compute wavefront control solutions while avoiding the explicit computation and manipulation of Jacobian matrices entirely. In simulations using a coronagraph design for the proposed Large UV/Optical/Infrared Surveyor (LUVOIR), we showed that our approach reduces overall CPU time and memory consumption compared to a Jacobian-based algorithm. Here, we expand on these results by implementing the proposed algorithm on the High Contrast Imager for Complex Aperture Telescopes (HiCAT) testbed at the Space Telescope Science Institute (STScI) and present initial experimental and numerical results.
Future large segmented space telescopes and their coronagraphic instruments are expected to provide the resolution and sensitivity to observe Earth-like planets with a 1010 contrast ratio at less than 100 mas from their host star. Advanced coronagraphs and wavefront control methods will enable the generation of high-contrast dark holes in the image of an observed star. However, drifts in the optical path of the system will lead to pointing errors and other critical low-order aberrations that will prevent maintenance of this contrast. To measure and correct for these errors, we explore the use of a Zernike wavefront sensor (ZWFS) in the starlight rejected and filtered by the focal plane mask of a Lyot-type coronagraph. In our previous work, the analytical phase reconstruction formalism of the ZWFS was adapted for a filtered beam. We now explore strategies to actively compensate for these drifts in a segmented pupil setup on the High-contrast imager for Complex Aperture Telescopes (HiCAT). This contribution presents laboratory results from closed-loop compensation of bench internal turbulence as well as known introduced aberrations using phase conjugation and interaction matrix approaches. We also study the contrast recovery in the image plane dark hole when using a closed loop based on the ZWFS.
The characterization of exoplanets’ atmospheres using direct imaging spectroscopy requires high-contrast over a wide wavelength range. We study a recently proposed focal plane wavefront estimation algorithm that exclusively uses broadband images to estimate the electric field. This approach therefore reduces the complexity and observational overheads compared to traditional single wavelength approaches. The electric field is estimated as an incoherent sum of monochromatic intensities with the pair-wise probing technique. This paper covers the detailed implementation of the algorithm and an application to the High-contrast Imager for Complex Aperture Telescopes (HiCAT) testbed with the goal to compare the performance between the broadband and traditional narrowband filter approaches.
Due to the limited number of photons, directly imaging planets requires long integration times with a coronagraphic instrument. The wavefront must be stable on the same time scale, which is often difficult in space due to thermal variations and other mechanical instabilities. In this paper, we discuss the implications on future space mission observing conditions of our recent laboratory demonstration of a dark hole maintenance (DHM) algorithm. The experiments are performed on the High-contrast imager for Complex Aperture Telescopes (HiCAT) at the Space Telescope Science Institute (STScI). The testbed contains a segmented aperture, a pair of deformable mirrors (DMs), and a lyot coronagraph. The segmented aperture injects high order zernike wavefront aberration drifts into the system which are then corrected by the DMs downstream via the DHM algorithm. We investigate various drift modes including segmented aperture drift, all DMs drift, and drift correction at multiple wavelengths.
We explore the high contrast capabilities of large segmented telescopes with Active and Adaptive Optics, with particular focus on a system view, which includes use of approaches that are routine for current large ground-based telescopes. These approaches include continuous Wavefront Sensing and control (WFS&C), and proper partitioning of engineering challenges by optimizing the error budget allocations. We present a methodology to compute wavefront stability requirements in the presence of temporal variations of the observatory optical errors at all spatial scales: global low order aberrations, segment to segment misalignments and high spatial frequencies. We start by deriving the sensitivity of the starlight suppression of a coronagraph instrument (e.g. the relationship between contrast and wavefront variance) for each family of spatial modes. We then propagate open loop wavefronts variances, alongside with the actual photons carrying the information associated with these misalignments, through diffractive linear wavefront sensor models. We calculate the Fisher information of measurements using those. That quantity is then used in the context of a Cramer-Rao bound to evaluate closed loop residuals, which are then propagated through coronagraph models to yield contrast fundamental limits. Working under the assumption that such WFS&C systems will be limited by the information content bottleneck due to the finite magnitude of a natural guide star, we use results from these calculations to quantify observatory requirements for a variety of exoplanet imaging missions. We highlight the similarities and differences between monolithic and segmented architectures, and show that the often-cited need for picometer stability is no longer required for the latter across the full aperture, but rather within combinations of segments. We also consider both the case of batch and recursive wavefront estimators (that take into account the entire sensing history) and make the case for significantly less challenging observatory requirements when the latter class of algorithms is implemented.
The phase-apodized-pupil Lyot coronagraph (PAPLC) is a pairing of the apodized-pupil Lyot coronagraph (APLC) and the apodizing phase plate (APP) coronagraph that yields (in numerical simulations) inner working angles as close as 1.4 lambda/D at contrasts of 10^-10 and post-coronagraphic throughput of <75% for telescope pupils with central obscurations of up to 30%. PAPLC designs with a phase-only apodizer are entirely achromatic. Here we show that a single deformable mirror (DM) can serve as the phase apodizer in monochromatic light. We present the first laboratory demonstration of the PAPLC on a segmented telescope pupil, created by an IrisAO segmented DM, on the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed. We offset the focal-plane mask in HiCAT, made for an APLC coronagraph, to act as the knife edge for the PAPLC. By defocusing the target acquisition camera installed on HiCAT, we can perform single-image phase retrieval on this camera. As this camera uses only light that is transmitted and filtered by the focal-plane mask, it enables simultaneous wavefront sensing and coronagraphic imaging. We study the capability of this wavefront sensor to recover drifts in piston, tip and tilt on the individual segments on the IrisAO DM installed on HiCAT.
We present recent laboratory results demonstrating high-contrast coronagraphy for future space-based large segmented telescopes such as the Large UV, Optical, IR telescope (LUVOIR) mission concept studied by NASA. The High-contrast Imager for Complex Aperture Telescopes (HiCAT) testbed aims to implement a system-level hardware demonstration for segmented aperture coronagraphs with wavefront control. The telescope hardware simulator employs a segmented deformable mirror with 36 hexagonal segments that can be controlled in piston, tip, and tilt. In addition, two continuous deformable mirrors are used for high-order wavefront sensing and control. The low-order sensing subsystem includes a dedicated tip-tilt stage, a coronagraphic target acquisition camera, and a Zernike wavefront sensor that is used to measure low-order aberration drifts. We explore the performance of a segmented aperture coronagraph both in “static” operations (limited by natural drifts and instabilities) and in “dynamic” operations (in the presence of artificial wavefront drifts added to the deformable mirrors), and discuss the estimation and control strategies used to reach and maintain the dark zone contrast. We summarize experimental results that quantify the performance of the testbed in terms of contrast, inner/outer working angle and bandpass, and analyze limiting factors by comparing against our end-to-end models.
We present a segment-level wavefront stability error budget for the LUVOIR A architecture essential for exoplanet detection. We start with a detailed finite element model to relate the temperature and gravity gradients at the location of the primary mirror to wavefront variations for each segment, and propagate the elements through a diffractive model of the observatory and coronagraphic instrument. Segment level errors are measured via a model of the WFS&C architecture in combination with a Zernike phase sensor and science camera. These sensitivities are used to relate semi-analytically the open and closed loop variance of the segments’ thermo-mechanical modes.
This paper introduces an analytical method to calculate segment-level wavefront error (WFE) tolerances to enable the detection of faint extra-solar planets using segmented-aperture telescopes in space. This study provides a full treatment of the case of spatially uncorrelated segment phasing errors for segmented telescope coronagraphy, which has so far only been approached using ad-hoc Monte Carlo (MC) simulations. Instead of describing the wavefront tolerance globally for all segments, our method produces spatially dependent requirement maps. We relate the statistical mean contrast in the coronagraph dark hole to the standard deviation of the WFE of each individual segment on the primary mirror. This statistical framework for segment-level tolerancing extends the Pair-based Analytical model for Segmented Telescope Imaging from Space (PASTIS), which is based uniquely on a matrix multiplication for the optical propagation. We confirm our analytical results with MC simulations of end-to-end optical propagations through a coronagraph. Comparing our results for the Apodized Pupil Lyot Coronagraph designs for the Large Ultraviolet Optical Infrared telescope to previous studies, we show general agreement but we provide a relaxation of the requirements for a significant subset of segments in the pupil. These requirement maps are unique to any given telescope geometry and coronagraph design. The spatially uncorrelated segment tolerances we calculate are a key element of a complete error budget that will also need to include allocations for correlated segment contributions. We discuss how the PASTIS formalism can be extended to the spatially correlated case by deriving the statistical mean contrast and its variance for a non-diagonal aberration covariance matrix. The PASTIS tolerancing framework therefore brings a new capability that is necessary for the global tolerancing of future segmented space observatories.
Due to the limited number of photons, directly imaging planets requires long integration times. The wavefront must be stable on the same time scale which is often difficult in space due to thermal variations and vibrations. In this paper, we discuss the results of implementing a dark hole maintenance (DHM) algorithm (Pogorelyuk et. al. 2019)1 on the High-contrast imager for Complex Aperture Telescopes (HiCAT) at the Space Telescope Science Institute (STScI). The testbed contains a pair of deformable mirrors (DMs) and a lyot coronagraph. The algorithm uses an Extended Kalman Filter (EKF) and DM dithering to predict the drifting electric field in the dark hole along with Electric Field Conjugation to cancel out the drift. The DM dither introduces phase diversity which ensures the EKF converges to the correct value. The DHM algorithm maintains an initial contrast of 8.5 x 10-8 for 6 hrs in the presence of the DM actuator random walk drift with a standard deviation of 1:7 x 10-3 nm/s..
The volume available on-board small satellites limit the optical aperture to a few centimetres, which limits the Ground- Sampling Distance (GSD) in the visible to approximately 3 m at 500 km. We present a performance analysis of the concept of a deployable CubeSat telescope. This payload will allow a tripling of the ground resolution achievable from a CubeSat imager, hence allowing very high resolution imaging from Low Earth Orbit (LEO). The project combines precision opto-mechanical deployment and cophasing of the mirrors segments using active optics. The payload has the potential of becoming a new off-the-shelf standardised system to be proposed for all high angular resolution imaging missions using CubeSats or similar nanosats. Ultimately, this technology will develop new instrumentation and technology for small satellite platforms with a primary mirror size equal or larger than 30 cm. In this paper, we present the breakdown of the different error sources that may affect the final optical quality and propose cophasing strategies. We show that the piston, tip and tilt aberrations may need to be as small as 15 nm RMS to allow for diffraction-limited imaging. By taking a co-conception approach, i.e. by taking into account the post-processing capability such as deconvolution, we believe these constraints may be somewhat released. Finally, we show numerical simulation of different solutions allowing the aberrations of the primary mirror segments.
This paper presents the setup for empirical validations of the Pair-based Analytical model for Segmented Telescope Imaging from Space (PASTIS) tolerancing model for segmented coronagraphy. We show the hardware configuration of the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed on which these experiments will be conducted at an intermediate contrast regime between 10-6 and 10-8. We describe the optical performance of the testbed with a classical Lyot coronagraph and describe the recent hardware upgrade to a segmented mode, using an IrisAO segmented deformable mirror. Implementing experiments on HiCAT is made easy through its top-level control infrastructure that uses the same code base to run on the real testbed, or to invoke the optical simulator. The experiments presented in this paper are run on the HiCAT testbed emulator, which makes them ready to be performed on actual hardware. We show results of three experiments with results from the emulator, with the goal to demonstrate PASTIS on hardware next. We measure the testbed PASTIS matrix, and validate the PASTIS analytical propagation model by comparing its contrast predictions to simulator results. We perform the tolerancing analysis on the optical eigenmodes (PASTIS modes) and on independent segments, then validate these results in respective experiments. This work prepares and enables the experimental validation of the analytical segment-based tolerancing model for segmented aperture coronagraphy with the specific application to the HiCAT testbed.
Imaging exo-Earths is an exciting but challenging task because of the 10-10 contrast ratio between these planets and their host star at separations narrower than 100 mas. Large segmented aperture space telescopes enable the sensitivity needed to observe a large number of planets. Combined with coronagraphs with wavefront control, they present a promising avenue to generate a high-contrast region in the image of an observed star. Another key aspect is the required stability in telescope pointing, focusing, and co-phasing of the segments of the telescope primary mirror for long-exposure observations of rocky planets for several hours to a few days. These wavefront errors should be stable down to a few tens of picometers RMS, requiring a permanent active correction of these errors during the observing sequence. To calibrate these pointing errors and other critical low-order aberrations, we propose a wavefront sensing path based on Zernike phase-contrast methods to analyze the starlight that is filtered out by the coronagraph at the telescope focus. In this work we present the analytical retrieval of the incoming low order aberrations in the starlight beam that is filtered out by an Apodized Pupil Lyot Coronagraph, one of the leading coronagraph types for starlight suppression. We implement this approach numerically for the active control of these aberrations and present an application with our first experimental results on the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed, the STScI testbed for Earth-twin observations with future large space observatories, such as LUVOIR and HabEx, two NASA flagship mission concepts.
We discuss the use of parametric phase-diverse phase retrieval to characterize and optimize the transmitted wavefront of a high-contrast apodized pupil coronagraph with and without an apodizer. We apply our method to correct the transmitted wavefront of the HiCAT (High contrast imager for Complex Aperture Telescopes) coronagraphic testbed. This correction requires a series of calibration steps, which we describe. The correction improves the system wavefront from 16 nm RMS to 3.0 nm RMS for the case where a uniform circular aperture is in place. We further measure the wavefront with the apodizer in place to be 11.7 nm RMS. Improvement to the apodized pupil phase retrieval process is necessary before a correction based on this measurement can be applied.
Direct imaging of exo-Earths and search for life is one of the most exciting and challenging objectives for future space observatories. Segmented apertures in space will be required to reach the needed large diameters beyond the capabilities of current or planned launch vehicles. These apertures present additional challenges for high-contrast coronagraphy, not only in terms of static phasing but also in terms of their stability. The Pair-based Analytical model for Segmented Telescope Imaging from Space (PASTIS) was developed to model the effects of segment-level optical aberrations on the final image contrast. In this paper, we extend the original PASTIS propagation model from a purely analytical to a semi-analytical method, in which we substitute the use of analytical images with numerically simulated images. The inversion of this model yields a set of orthonormal modes that can be used to determine segment-level wavefront tolerances. We present results in the case of segment-level piston error applied to the baseline coronagraph design of LUVOIR A, with minimum and maximum wavefront error constraint between 56 pm and 290 pm per segment. The analysis is readily generalizable to other segment-level aberrations modes, and can also be expanded to establish stability tolerances for these missions.
Detection and characterization of Earth-like planets around nearby stars using the direct imaging technique is a key scientific objective of future NASA astrophysics flagship missions. As a result, dedicated exoplanet instruments are being studied for the Large UV/Optical/Infrared Surveyor (LUVOIR) and the Habitable Exoplanet Imager (HabEx) mission concepts. In this paper we discuss the Extreme Coronagraph for Living Planetary Systems (ECLIPS) instrument of LUVOIR. ECLIPS will be capable of providing starlight suppression levels of ten orders of magnitude over a broad range of wavelengths in order to detect and characterize the light reflected from potentially Earth-like planets. It will also allow future astronomers to study in great detail the diversity of exoplanets. First, we review the main science drivers and emphasize those that are the most stressing on the instrument design. We then present the overall parameters of the instrument (general architecture and back-end camera). We delve into the details of the static coronagraph masks, which have a significant impact on the scientific productivity of the mission. We discuss the choices the LUVOIR team made in order to maximize the discovery yield of exoEarth candidates. We then present our work on the technological feasibility of such an instrument, focusing in particular on the image stability necessary to achieve ten orders of magnitude of starlight extinction over hours of exposure. We present our error budget and show that using a combination of instrument level (low and high order wavefront sensors) and observatory level telemetry can yield an overall architecture that meets these requirements. Finally, we discuss future technology development efforts that will mature these technologies.
The goal of the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed is to demonstrate coronagraphic starlight suppression solutions for future segmented aperture space telescopes such as the Large UV, Optical, IR telescope (LUVOIR) mission concept being studied by NASA. The testbed design has the flexibility to enable studies with increasing complexity for telescope aperture geometries starting with off-axis telescopes, then on-axis telescopes with central obstruction and support structures. The testbed implements the Apodized Pupil Lyot Coronagraph (APLC) optimized for the HiCAT aperture, which is similar to one of the possible geometries considered for LUVOIR. Wavefront can be controlled using continuous deformable mirrors, and wavefront sensing is performed using the imaging camera, or a dedicated phase retrieval camera, and also in a low-order wavefront sensing arm. We present a progress update of the testbed in particular results using two deformable mirror control to produce high-contrast dark zone, and preliminary results using the testbed’s low order Zernike wavefront sensor.
KEYWORDS: Wavefronts, James Webb Space Telescope, Monochromatic aberrations, Point spread functions, Wavefront sensors, Mirrors, Cameras, Space telescopes, Telescopes, Phase retrieval
The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a hardware simulator for wavefront sensing and control designed to produce JWST-like images. A model of the JWST three mirror anastigmat is realized with three lenses in the form of a Cooke triplet, which provides JWST-like optical quality over a field equivalent to a NIRCam module. An Iris AO hexagonally segmented mirror stands in for the JWST primary. This setup successfully produces images extremely similar to expected JWST in- ight point spread functions (PSFs), and NIRCam images from cryotesting, in terms of the PSF morphology and sampling relative to the diffraction limit. The segmentation of the primary mirror into subapertures introduces complexity into wavefront sensing and control (WFSandC) of large space based telescopes like JWST. JOST provides a platform for independent analysis of WFSandC scenarios for both commissioning and maintenance activities on such observatories. We present an update of the current status of the testbed including both single field and wide-field alignment results. We assess the optical quality of JOST over a wide field of view to inform the future implementation of different wavefront sensing algorithms including the currently implemented Linearized Algorithm for Phase Diversity (LAPD). JOST complements other work at the Makidon Laboratory at the Space Telescope Science Institute, including the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed, that investigates coronagraphy for segmented aperture telescopes. Beyond JWST we intend to use JOST for WFSandC studies for future large segmented space telescopes such as LUVOIR.
Segmented telescopes are a possible approach to enable large-aperture space telescopes for the direct imaging and spectroscopy of habitable worlds. However, the increased complexity of their aperture geometry, due to the central obstruction, support structures and segment gaps, makes high-contrast imaging very challenging. The High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed was designed to study and develop solutions for such telescope pupils using wavefront control and coronagraphic starlight suppression. The testbed design has the flexibility to enable studies with increasing complexity for telescope aperture geometries starting with off-axis telescopes, then on-axis telescopes with central obstruction and support structures - e.g. the Wide Field Infrared Survey Telescope (WFIRST) - up to on-axis segmented telescopes, including various concepts for a Large UV, Optical, IR telescope (LUVOIR). In the past year, HiCAT has made significant hardware and software updates in order to accelerate the development of the project. In addition to completely overhauling the software that runs the testbed, we have completed several hardware upgrades, including the second and third deformable mirror, and the first custom Apodized Pupil Lyot Coronagraph (APLC) optimized for the HiCAT aperture, which is similar to one of the possible geometries considered for LUVOIR. The testbed also includes several external metrology features for rapid replacement of parts, and in particular the ability to test multiple apodizers readily, an active tip-tilt control system to compensate for local vibration and air turbulence in the enclosure. On the software and operations side, the software infrastructure enables 24/7 automated experiments that include routine calibration tasks and high-contrast experiments. In this communication we present an overview and status update of the project, both on the hardware and software side, and describe the results obtained with APLC wavefront control.
We discuss the use of parametric phase-diverse phase retrieval as an in-situ high-fidelity wavefront measurement method to characterize and optimize the transmitted wavefront of a high-contrast coronagraphic instrument. We apply our method to correct the transmitted wavefront of the HiCAT (High contrast imager for Complex Aperture Telescopes) coronagraphic testbed. This correction requires a series of calibration steps, which we describe. The correction improves the system wavefront from 16 nm RMS to 3.0 nm RMS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.