HiZ-GUNDAM is a future satellite mission whose mission concept was approved by ISAS/JAXA, and it is one of the future satellite candidates of JAXA’s competitive medium-class mission. HiZ-GUNDAM will lead time-domain astronomy in 2030s, and its key sciences are (1) exploration of the early universe with high-redshift gamma-ray bursts, and (2) contribution to the multi-messenger astronomy. Two mission payloads are aboard HiZ-GUNDAM to realize these two scientific issues. The wide field X-ray monitors which consist of Lobster Eye optics array and focal imaging sensor, monitor ~0.5 steradian field of view in 0.5–4 keV energy range. The near infrared telescope with an aperture size of 30 cm in diameter performs simultaneous 5-band photometric observation in 0.5–2.5 μm wavelength with Koester’s prism for X-ray transients discovered by Wide Field X-ray Monitor. In this paper, we introduce the mission overview of HiZ-GUNDAM while the information contained herein may change in future studies.
The X-Ray Imaging and Spectroscopy Mission (XRISM) project at JAXA officially started in 2018. Following the development of onboard components, the proto-flight test was conducted from 2021 to 2023 at JAXA Tsukuba Space Center. The spacecraft was launched from JAXA Tanegashima Space Center on September 7, 2023 (JST), and onboard components, including the science instruments, were activated during the in-orbit commissioning phase. Following the previous report in 2020, we report the spacecraft ground tests, the launch operation, in-orbit operations, and the status and plan of initial and subsequent guest observations.
Xtend is one of the two telescopes onboard the X-ray imaging and spectroscopy mission (XRISM), which was launched on September 7th, 2023. Xtend comprises the Soft X-ray Imager (SXI), an X-ray CCD camera, and the X-ray Mirror Assembly (XMA), a thin-foil-nested conically approximated Wolter-I optics. A large field of view of 38′ × 38′ over the energy range from 0.4 to 13 keV is realized by the combination of the SXI and XMA with a focal length of 5.6 m. The SXI employs four P-channel, back-illuminated type CCDs with a thick depletion layer of 200 μm. The four CCD chips are arranged in a 2×2 grid and cooled down to −110°C with a single-stage Stirling cooler. Before the launch of XRISM, we conducted a month-long spacecraft thermal vacuum test. The performance verification of the SXI was successfully carried out in a course of multiple thermal cycles of the spacecraft. About a month after the launch of XRISM, the SXI was carefully activated and the soundness of its functionality was checked by a step-by-step process. Commissioning observations followed the initial operation. We here present pre- and post-launch results verifying the Xtend performance. All the in-orbit performances are consistent with those measured on ground and satisfy the mission requirement. Extensive calibration studies are ongoing.
The Soft X-ray Imager (SXI) is an X-ray CCD camera of the Xtend system onboard the X-Ray Imaging and Spectroscopy Mission (XRISM), which was successfully launched on September 7, 2023 (JST). During ground cooling tests of the CCDs in 2020/2021, using the flight-model detector housing, electronic boards, and a mechanical cooler, we encountered an unexpected issue. Anomalous charges appeared outside the imaging area of the CCDs and intruded into the imaging area, causing pulse heights to stick to the maximum value over a wide region. Although this issue has not occurred in subsequent tests or in orbit so far, it could seriously affect the imaging and spectroscopic performance of the SXI if it were to happen in the future. Through experiments with non-flight-model detector components, we successfully reproduced the issue and identified that the anomalous charges intrude via the potential structure created by the charge injection electrode at the top of the imaging area. To prevent anomalous charge intrusion and maintain spectroscopic performance that satisfies the requirements, even if this issue occurs in orbit, we developed a new CCD driving technique. This technique is different from the normal operation in terms of potential structure and its changes during imaging and charge injection. In this paper, we report an overview of the anomalous charge issue, the related potential structures, the development of the new CCD driving technique to prevent the issue, the imaging and spectroscopic performance of the new technique, and the results of investigation experiments to identify the source of the anomalous charges.
XRISM (X-Ray Imaging and Spectroscopy Mission) is an astronomical satellite with the capability of highresolution spectroscopy with the X-ray microcalorimeter, Resolve, and wide field-of-view imaging with the CCD camera, Xtend. The Xtend consists of the mirror assembly (XMA: X-ray Mirror Assembly) and detector (SXI: Soft X-ray Imager). The components of SXI include CCDs, analog and digital electronics, and a mechanical cooler. After the successful launch on September 6th, 2023 (UT) and subsequent critical operations, the mission instruments were turned on and set up. The CCDs have been kept at the designed operating temperature of −110°C after the electronics and cooling system were successfully set up. During the initial operation phase, which continued for more than a month after the critical operations, we verified the observation procedure, stability of the cooling system, all the observation options with different imaging areas and/or timing resolutions, and operations for protection against South Atlantic Anomaly. We optimized the operation procedure and observation parameters including the cooler settings, imaging areas for the specific modes with higher timing resolutions, and event selection algorithm. We summarize our policy and procedure of the initial operations for SXI. We also report on a couple of issues we faced during the initial operations and lessons learned from them.
XRISM (X-ray Imaging and Spectroscopy Mission) is an X-ray astronomy satellite developed in collaboration with JAXA, NASA and ESA. It successfully launched on Sept. 7, 2023. Two complementary X-ray telescopes, Resolve and Xtend are on-board XRISM. Resolve uses the pixelized X-ray micro calorimeter developed by NASA/GSFC and has very high energy resolution of 5 eV. On the other hand, Xtend uses an X-ray CCD camera as its focal plane detector which has high spatial resolution and a wide field of view. We evaluated the performance of the X-ray Mirror Assembly (XMA) for Xtend using data observed during the commissioning and PV phases of XRISM. To verify the imaging performance, the Point Spread Functions (PSF) generated from the observations of NGC 4151 and PDS 456 were compared with the ground-calibration results. The results show that the imaging performance of Xtend-XMA is not significantly different from that of the ground calibration, and that it meet the requirement. The effective area was verified by comparing the results of simultaneous observations of 3C 273 by XRISM and four X-ray astronomy satellites (Chandra, XMM-Newton, NuSTAR, and Swift). The results of the fitting of the X-ray spectrum of Xtend show no significant difference from the results of other satellites, suggesting the effective area used for fitting is correct. The on-axis position on the detector was estimated from the intensity of the Abell 2029 observations at four off-axis angles. The on-axis is about 40 arcsec away from the aim point, and the decrease in effective area at the aim point is less than 1%. Stray light observations of the Crab Nebula at 60 arcmin off-axis were obtained at two different satellite roll angles. The stray light intensity obtained at each roll angle was significantly different, verifying the dependence of the stray light on the roll angle.
Xtend is a soft x-ray imaging telescope developed for the x-ray imaging and spectroscopy mission (XRISM). XRISM is scheduled to be launched in the Japanese fiscal year 2022. Xtend consists of the soft x-ray imager (SXI), an x-ray CCD camera, and the x-ray mirror assembly (XMA), a thin-foil-nested conically approximated Wolter-I optics. The SXI uses the P-channel, back-illuminated type CCD with an imaging area size of 31mm on a side. The four CCD chips are arranged in a 2×2 grid and can be cooled down to −120 °C with a single-stage Stirling cooler. The XMA nests thin aluminum foils coated with gold in a confocal way with an outer diameter of 45 cm. A pre-collimator is installed in front of the x-ray mirror for the reduction of the stray light. Combining the SXI and XMA with a focal length of 5.6m, a field of view of 38′ × 38′ over the energy range from 0.4 to 13 keV is realized. We have completed the fabrication of the flight model of both SXI and XMA. The performance verification has been successfully conducted in a series of sub-system level tests. We also carried out on-ground calibration measurements and the data analysis is ongoing.
X-Ray Imaging and Spectroscopy Mission (XRISM) is the seventh Japanese X-ray astronomical satellite scheduled to be launched in the Japanese fiscal year 2022. XRISM has two mission instruments, “Resolve”, a soft X-ray spectrometer, and “Xtend”, a soft X-ray imager. The Former is an X-ray micro-calorimeter that has ∼ 5 eV of energy resolution with 3′ × 3 ′ of field of view. The Latter is an X-ray CCD camera with 38′ × 38′ of field of view. Both instruments are placed on the focal plane of X-ray telescopes, X-ray Mirror Assembly (XMA). Xtend CCDs are designed almost the same as those of Hitomi (ASTRO-H), whereas some improvements have been applied. In 2019, flight-model (FM) candidates of Xtend CCDs were fabricated by Hamamatsu Photonics K.K. We performed screening experiments to examine whether they met requirements or not, and then selected the best four chips as the FM. We then performed on-ground calibration on August 2019 and September 2019 for the FM chips to determine the gain correction parameters and to construct the detector response with several energies of monochromatic X-ray. In this paper, we report screening, selection, and on-ground calibration processes, especially focusing on the response verification.
We report current status of developing Soft X-ray Imager (SXI), the X-ray CCD camera onboard X-Ray Imaging and Spectroscopy Mission (XRISM). Four flight model (FM) CCDs have been selected considering several items including energy resolution at 5.9keV, CTI, dark current, etc. We have also completed calibration campaign for all the FM CCDs. Initial analyses show that the response function for monochromatic X-rays is basically the same as that of Hitomi CCDs. The focal plane including the single-stage Stirling cooler has been assembled. Production of key parts in SXI sensor body such as contamination blocking filter and onboard calibration source has been finished and they are waiting for assemble. The digitized signals of the CCD are corrected step by step before conversion to X-ray energy. We are preparing calibration database for the correction such as CTI, gain, and line redistribution function.
HiZ-GUNDAM is a future satellite mission which will lead the time-domain astronomy and the multi-messenger astronomy through observations of high-energy transient phenomena. A mission concept of HiZ-GUNDAM was approved by ISAS/JAXA, and it is one of the future satellite candidates of JAXA’s medium-class mission. We are in pre-phase A (before pre-project) and elaborating the mission concept, mission/system requirements for the launch in the late 2020s. The main themes of HiZ-GUNDAM mission are (1) exploration of the early universe with high-redshift gamma-ray bursts, and (2) contribution to the multi-messenger astronomy. HiZ-GUNDAM has two kinds of mission payload. The wide field X-ray monitors consist of Lobster Eye optics array and focal imaging sensor, and monitor ~1 steradian field of view in 0.5 – 4 keV energy range. The near infrared telescope has an aperture size 30 cm in diameter, and simultaneously observes four wavelength bands between 0.5 – 2.5 μm. In this paper, we introduce the mission overview of HiZ-GUNDAM.
The X-Ray Imaging and Spectroscopy Mission (XRISM) is the successor to the 2016 Hitomi mission that ended prematurely. Like Hitomi, the primary science goals are to examine astrophysical problems with precise highresolution X-ray spectroscopy. XRISM promises to discover new horizons in X-ray astronomy. XRISM carries a 6 x 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly and a co-aligned X-ray CCD camera that covers the same energy band over a large field of view. XRISM utilizes Hitomi heritage, but all designs were reviewed. The attitude and orbit control system were improved in hardware and software. The number of star sensors were increased from two to three to improve coverage and robustness in onboard attitude determination and to obtain a wider field of view sun sensor. The fault detection, isolation, and reconfiguration (FDIR) system was carefully examined and reconfigured. Together with a planned increase of ground support stations, the survivability of the spacecraft is significantly improved.
LiteBIRD is a candidate for JAXA’s strategic large mission to observe the cosmic microwave background (CMB) polarization over the full sky at large angular scales. It is planned to be launched in the 2020s with an H3 launch vehicle for three years of observations at a Sun-Earth Lagrangian point (L2). The concept design has been studied by researchers from Japan, U.S., Canada and Europe during the ISAS Phase-A1. Large scale measurements of the CMB B-mode polarization are known as the best probe to detect primordial gravitational waves. The goal of LiteBIRD is to measure the tensor-to-scalar ratio (r) with precision of r < 0:001. A 3-year full sky survey will be carried out with a low frequency (34 - 161 GHz) telescope (LFT) and a high frequency (89 - 448 GHz) telescope (HFT), which achieve a sensitivity of 2.5 μK-arcmin with an angular resolution 30 arcminutes around 100 GHz. The concept design of LiteBIRD system, payload module (PLM), cryo-structure, LFT and verification plan is described in this paper.
X-ray Astronomy Recovery Mission (XARM) scheduled to be launched in early 2020’s carries two soft X-ray telescopes. One is Resolve consisting of a soft X-ray mirror and a micro calorimeter array, and the other is Soft X-ray Imaging Telescope (Xtend), a combination of an X-ray mirror assembly (XMA) and an X-ray CCD camera (SXI). Xtend covers a field of view (FOV) of 38′ × 38′ , much larger than that of Resolve (3′ × 3 ′ ) with moderate energy resolution in the energy band from 0.4 keV to 13 keV, which is similar to that of Resolve (from 0.3 keV to 12 keV). Simultaneous observations of both telescopes provide complimentary data of X-ray sources in their FOV. In particular, monitoring X-ray sources outside the Resolve FOV but inside the Xtend FOV is important to enhance the reliability of super high resolution spectra obtained with Resolve. Xtend is also expected to be one of the best instruments for low surface brightness X-ray emissions with its low non X-ray background level, which is comparable to that of Suzaku XIS. The design of Xtend is almost identical to those of Soft X-ray Telescope (SXT) and Soft X-ray Imager (SXI) both on board the Hitomi satellite. However, several mandatory updates are included. Updates for the CCD chips are verified with experiment using test CCD chips before finalizing the design of the flight model CCD. Fabrication of the foils for XMA has started, and flight model production of the SXI is almost ready.
The ASTRO-H mission was designed and developed through an international collaboration of JAXA, NASA, ESA, and the CSA. It was successfully launched on February 17, 2016, and then named Hitomi. During the in-orbit verification phase, the on-board observational instruments functioned as expected. The intricate coolant and refrigeration systems for soft X-ray spectrometer (SXS, a quantum micro-calorimeter) and soft X-ray imager (SXI, an X-ray CCD) also functioned as expected. However, on March 26, 2016, operations were prematurely terminated by a series of abnormal events and mishaps triggered by the attitude control system. These errors led to a fatal event: the loss of the solar panels on the Hitomi mission. The X-ray Astronomy Recovery Mission (or, XARM) is proposed to regain the key scientific advances anticipated by the international collaboration behind Hitomi. XARM will recover this science in the shortest time possible by focusing on one of the main science goals of Hitomi,“Resolving astrophysical problems by precise high-resolution X-ray spectroscopy”.1 This decision was reached after evaluating the performance of the instruments aboard Hitomi and the mission’s initial scientific results, and considering the landscape of planned international X-ray astrophysics missions in 2020’s and 2030’s. Hitomi opened the door to high-resolution spectroscopy in the X-ray universe. It revealed a number of discrepancies between new observational results and prior theoretical predictions. Yet, the resolution pioneered by Hitomi is also the key to answering these and other fundamental questions. The high spectral resolution realized by XARM will not offer mere refinements; rather, it will enable qualitative leaps in astrophysics and plasma physics. XARM has therefore been given a broad scientific charge: “Revealing material circulation and energy transfer in cosmic plasmas and elucidating evolution of cosmic structures and objects”. To fulfill this charge, four categories of science objectives that were defined for Hitomi will also be pursued by XARM; these include (1) Structure formation of the Universe and evolution of clusters of galaxies; (2) Circulation history of baryonic matters in the Universe; (3) Transport and circulation of energy in the Universe; (4) New science with unprecedented high resolution X-ray spectroscopy. In order to achieve these scientific objectives, XARM will carry a 6 × 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly, and an aligned X-ray CCD camera covering the same energy band and a wider field of view. This paper introduces the science objectives, mission concept, and observing plan of XARM.
The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.
The Soft X-ray Imager (SXI) is an imaging spectrometer using charge-coupled devices (CCDs) aboard the Hitomi x-ray observatory. The SXI sensor has four CCDs with an imaging area size of 31 mm×31 mm arranged in a 2×2 array. Combined with the x-ray mirror, the Soft X-ray Telescope, the SXI detects x-rays between 0.4 and 12 keV and covers a 38′×38′ field of view. The CCDs are P-channel fully depleted, back-illumination type with a depletion layer thickness of 200 μm. Low operation temperature down to −120°C as well as charge injection is employed to reduce the charge transfer inefficiency (CTI) of the CCDs. The functionality and performance of the SXI are verified in on-ground tests. The energy resolution measured is 161 to 170 eV in full width at half maximum for 5.9-keV x-rays. In the tests, we found that the CTI of some regions is significantly higher. A method is developed to properly treat the position-dependent CTI. Another problem we found is pinholes in the Al coating on the incident surface of the CCDs for optical light blocking. The Al thickness of the contamination blocking filter is increased to sufficiently block optical light.
The Hitomi (ASTRO-H) mission is the sixth Japanese X-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. After a successful launch on 2016 February 17, the spacecraft lost its function on 2016 March 26, but the commissioning phase for about a month provided valuable information on the on-board instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.
We report here the performance of the SXI on ASTRO-H that was started its operation from March,02 2016. The SXI consists of 4 CCDs that cover 38' X 38' sky region. They are P-channel back-illumination type CCD with a depletion layer of 200 μm. Charge injection (CI) method is applied from its beginning of the mission. Two single stage sterling coolers are equipped with the SXI while one of them has enough power to cool the CCD to -110°C. There are two issues in the SXI performance: one is a light-leak and the other is a cosmic-ray echo. The light-leak is due to the fact that the day-Earth irradiates visible lights onto the SXI body through holes in the satellite base plate. It can be avoided by selecting targets not on the anti-day-Earth direction. The cosmic-ray echo is due to the improper parameter values that is fixed by revising them with which the cosmic-ray echo does not affect the image. Using the results of RXJ1856.5-3754, we confirm that the possible contaminants on the CCD is well within our expectation.
The Soft X-ray Imager (SXI) is an X-ray CCD camera onboard the ASTRO-H X-ray observatory. The CCD chip used is a P-channel back-illuminated type, and has a 200-µm thick depletion layer, with which the SXI covers the energy range between 0.4 keV and 12 keV. Its imaging area has a size of 31 mm x 31 mm. We arrange four of the CCD chips in a 2 by 2 grid so that we can cover a large field-of-view of 38’ x 38’. We cool the CCDs to -120 °C with a single-stage Stirling cooler. As was done for the CCD camera of the Suzaku satellite, XIS, artificial charges are injected to selected rows in order to recover charge transfer inefficiency due to radiation damage caused by in-orbit cosmic rays. We completed fabrication of flight models of the SXI and installed them into the satellite. We verified the performance of the SXI in a series of satellite tests. On-ground calibrations were also carried out and detailed studies are ongoing.
X-ray CCD operated onboard satellite are contaminated by outgas from organic material used in satellites. This contamination causes a significant reduction in the detection sensitivity of X-ray detectors.
In order to prevent such contamination to the Back-Illuminated CCD (BI-CCD) of the Soft X-ray Imager
(SXI) onboard ASTRO-H, we have developed a Contamination Blocking Filter (CBF), which consists of ~30nm thick Aluminum and ~200nm thick Polyimide. The CBF is be placed on the top of the CCD camera hood and is required to have a high X-ray transmission in order to take advantage of the high detection efficiency of BI-CCD.
We measured the X-ray transmission of three flight candidates of the CBF last October at the SPring-8 and obtained the X-ray transmission of three CBFs in the soft X-ray energy from 0.2 to 1.8 keV which covers the absorption edges around C-K, N-K, O-K, and Al-K including X-ray absorption fine structure (XAFS). In these measurements, we found three CBFs have high X-ray transmission below 2ke V, e.g. ~70% at around 0.5 keV, and determined the thickness of Al and Polyimide to be 220 nm and ~50 nm, respectively. We will calculate the response function of SXI including these results.
Soft X-ray Imager (SXI) is a CCD camera onboard the ASTRO-H satellite which is scheduled to be launched in 2015. The SXI camera contains four CCD chips, each with an imaging area of 31mm x 31 mm, arrayed in mosaic, covering the whole FOV area of 38′ x 38′. The CCDs are a P-channel back-illuminated (BI) type with a depletion layer thickness of 200 _m. High QE of 77% at 10 keV expected for this device is an advantage to cover an overlapping energy band with the Hard X-ray Imager (HXI) onboard ASTRO-H. Most of the flight components of the SXI system are completed until the end of 2013 and assembled, and an end-to-end test is performed. Basic performance is verified to meet the requirements. Similar performance is confirmed in the first integration test of the satellite performed in March to June 2014, in which the energy resolution at 5.9 keV of 160 eV is obtained. In parallel to these activities, calibrations using engineering model CCDs are performed, including QE, transmission of a filter, linearity, and response profiles.
KEYWORDS: Avalanche photodetectors, X-rays, Field effect transistors, Resistance, Crystals, Sensors, Hard x-rays, Scintillators, Analog electronics, Stanford Linear Collider
WF-MAXI is a mission to detect and localize X-ray transients with short-term variability as gravitational-wave (GW) candidates including gamma-ray bursts, supernovae etc. We are planning on starting observations by WF-MAXI to be ready for the initial operation of the next generation GW telescopes (e.g., KAGRA, Advanced LIGO etc.). WF-MAXI consists of two main instruments, Soft X-ray Large Solid Angle Camera (SLC) and Hard X-ray Monitor (HXM) which totally cover 0.7 keV to 1 MeV band. HXM is a multi-channel array of crystal scintillators coupled with APDs observing photons in the hard X-ray band with an effective area of above 100 cm2. We have developed an analog application specific integrated circuit (ASIC) dedicated for the readout of 32-channel APDs' signals using 0.35 μm CMOS technology based on Open IP project and an analog amplifier was designed to achieve a low-noise readout. The developed ASIC showed a low-noise performance of 2080 e- + 2.3 e-/pF at root mean square and with a reverse-type APD coupled to a Ce:GAGG crystal a good FWHM energy resolution of 6.9% for 662 keV -rays.
WF-MAXI is a soft X-ray transient monitor proposed for the ISS/JEM. Unlike MAXI, it will always cover a large field of view (20 % of the entire sky) to detect short transients more efficiently. In addition to the various transient sources seen by MAXI, we hope to localize X-ray counterparts of gravitational wave events, expected to be directly detected by Advanced-LIGO, Virgo and KAGRA in late 2010's. The main instrument, the Soft X-ray Large Solid Angle Cameras (SLC) is sensitive in the 0.7-12 keV band with a localization accuracy of ~ 0:1°. The Hard X-ray Monitor (HXM) covers the same sky field in the 20 keV-1 MeV band.
Wide-Field MAXI (WF-MAXI) planned to be installed in Japanese Experiment Module “Kibo” Exposed Facility of the international space station (ISS). WF-MAXI consists of two types of cameras, Soft X-ray Large Solid Angle Camera (SLC) and Hard X-ray Monitor (HXM). HXM is multi-channel arrays of CsI scintillators coupled with avalanche photodiodes (APDs) which covers the energy range of 20 - 200 keV. SLC is arrays of CCD, which is evolved version of MAXI/SSC. Instead of slit and collimator in SSC, SLC is equipped with coded mask allowing its field of view to 20% of all sky at any given time, and its location determination accuracy to few arcminutes. In older to achieve larger effective area, the number of CCD chip and the size of each chip will be larger than that of SSC. We are planning to use 59 x 31 mm2 CCD chip provided by Hamamatsu Photonics. Each camera will be quipped with 16 CCDs and total of 4 cameras will be installed in WF-MAXI. Since SLC utilize X-ray CCDs it must equip active cooling system for CCDs. Instead of using the peltier cooler, we use mechanical coolers that are also employed in Astro-H. In this way we can cool the CCDs down to -100C. ISS orbit around the earth in 90 minutes; therefore a point source moves 4 arcminutes per second. In order to achieve location determination accuracy, we need fast readout from CCD. The pulse heights are stacked into a single row along the vertical direction. Charge is transferred continuously, thus the spatial information along the vertical direction is lost and replaced with the precise arrival time information. Currently we are making experimental model of the camera body including the CCD and electronics for the CCDs. In this paper, we show the development status of SLC.
Monitor of All-sky X-ray Image (MAXI) is mounted on the International Space Station (ISS). Since 2009 it has been scanning the whole sky in every 92 minutes with ISS rotation. Due to high particle background at high latitude regions the carbon anodes of three GSC cameras were broken. We limit the GSC operation to low-latitude region around equator. GSC is suffering a double high background from Gamma-ray altimeter of Soyuz spacecraft. MAXI issued the 37-month catalog with 500 sources above ~0.6 mCrab in 4-10 keV. MAXI issued 133 to Astronomers Telegram and 44 to Gammaray burst Coordinated Network so far. One GSC camera had a small gas leak by a micrometeorite. Since 2013 June, the 1.4 atm Xe pressure went down to 0.6 atm in 2014 May 23. By gradually reducing the high voltage we keep using the proportional counter. SSC with X-ray CCD has detected diffuse soft X-rays in the all-sky, such as Cygnus super bubble and north polar spur, as well as it found a fast soft X-ray nova MAXI J0158-744. Although we operate CCD with charge-injection, the energy resolution is degrading. In the 4.5 years of operation MAXI discovered 6 of 12 new black holes. The long-term behaviors of these sources can be classified into two types of the outbursts, 3 Fast Rise Exponential Decay (FRED) and 3 Fast Rise and Flat Top (FRFT). The cause of types is still unknown.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions developed by the Institute of Space and Astronautical Science (ISAS), with a planned launch in 2015. The ASTRO-H mission is equipped with a suite of sensitive instruments with the highest energy resolution ever achieved at E > 3 keV and a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. The simultaneous broad band pass, coupled with the high spectral resolution of ΔE ≤ 7 eV of the micro-calorimeter, will enable a wide variety of important science themes to be pursued. ASTRO-H is expected to provide breakthrough results in scientific areas as diverse as the large-scale structure of the Universe and its evolution, the behavior of matter in the gravitational strong field regime, the physical conditions in sites of cosmic-ray acceleration, and the distribution of dark matter in galaxy clusters at different redshifts.
The Soft X-ray Imager, SXI, is an X-ray CCD camera onboard the ASTRO-H satellite to be launched in 2015. ASTRO-H will carry two types of soft X-ray detector. The X-ray calorimeter, SXS, has an excellent energy resolution with a narrow field of view while the SXI has a medium energy resolution with a large field of view, 38′ square. We employ 4 CCDs of P-channel type with a depletion layer of 200 μm. Having passed the CDR, we assemble the FM so that we can join the final assembly. We present here the SXI status and its expected performance in orbit.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated
by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the highenergy
universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV.
These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3–12 keV with
high spectral resolution of ΔE ≦ 7 eV, enabled by a micro-calorimeter array located in the focal plane of
thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5–80 keV, located in the focal plane of
multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4–12 keV,
with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera
type soft gamma-ray detector, sensitive in the 40–600 keV band. The simultaneous broad bandpass, coupled
with high spectral resolution, will enable the pursuit of a wide variety of important science themes.
Soft X-ray Imager (SXI) is a CCD camera onboard the ASTRO-H satellite which is scheduled to be launched
in 2014. The SXI camera contains four CCD chips, each with an imaging area of 31mm×
31 mm, arrayed in
mosaic, which cover the whole FOV area of 38' ×
38'. The SXI CCDs are a P-channel back-illuminated (BI) type
with a depletion layer thickness of 200 μm. High QE of 77% at 10 keV expected for this device is an advantage
to cover an overlapping energy band with the Hard X-ray Imager (HXI) onboard ASTRO-H. Verification with
engineering model of the SXI has been performed since 2011. Flight model design was fixed and its fabrication
has started in 2012.
Soft X-ray Imager (SXI) is a CCD camera onboard the ASTRO-H satellite which is scheduled to be launched
in 2014. The SXI camera contains four CCD chips, each with an imaing aread of 31mmx31 mm, arrayed in
mosaic, which cover the whole FOV area of 38'x38'. The SXI CCD of which model name is HPK Pch-NeXT4
is a P-channel type, back-illuminated, fully depleted device with a thickness of 200μm. We have developed an
engineering model of the SXI camera body with coolers, and analog electronics for them. Combined with the
bread board digital electronics, we succeeded in operation the whole the SXI system. The CCDs are cooled down
to -120°C with this system, and X-rays from 55Fe sources are detected. Although optimization of the system is in
progress, the energy resolution of typical 200 eV and best 156 eV (FWHM) at 5.9 keV are obtained. The readout
noise is 10 e- to 15 e-, and to be improved its goal value of 5 e-. On-going function tests and environment tests
reveal some issues to be solved until the producntion of the SXI flight model in 2012.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated
by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the
high-energy universe by performing high-resolution, high-throughput spectroscopy with moderate angular
resolution. ASTRO-H covers very wide energy range from 0.3 keV to 600 keV. ASTRO-H allows a combination
of wide band X-ray spectroscopy (5-80 keV) provided by multilayer coating, focusing hard X-ray
mirrors and hard X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3-12 keV)
provided by thin-foil X-ray optics and a micro-calorimeter array. The mission will also carry an X-ray CCD
camera as a focal plane detector for a soft X-ray telescope (0.4-12 keV) and a non-focusing soft gamma-ray
detector (40-600 keV) . The micro-calorimeter system is developed by an international collaboration led
by ISAS/JAXA and NASA. The simultaneous broad bandpass, coupled with high spectral resolution of
ΔE ~7 eV provided by the micro-calorimeter will enable a wide variety of important science themes to be
pursued.
We report the in orbit status of the MAXI/SSC onboard the international space station (ISS). It was commissioned
in August 2009. This is the first all sky survey mission employing X-ray CCDs. It is a slit camera with a
field of view of 1.5° × 90° and it scans the sky as the ISS rotates around the earth.
The CCD's are cooled down to about -60°C by peltier device and a loop heat pipe. The observation efficiency
of the SSC is about 30% due to edge glow, but all of the 32 CCDs in the SSC are cooled down as we expected
and functioning property. The performance of the CCD is continuously monitored both by the Mn-K X-rays
and by the Cu-K X-rays.
There are many sources detected not only point sources but extended sources. But further work in data
screening and more observation time is needed to obtain the clear structure of the extended emission.
MAXI, the first astronomical payload on JEM-EF of ISS, began operation on August 3, 2009 for monitoring all-sky
X-ray images every ISS orbit (92 min). All instruments as well as two main X-ray slit cameras, the GSC and SSC,
worked well as expected for one month test operation. The MAXI has been operated since August, 2009 and monitored
more than 300 X-ray sources, which include Galactic black holes and black hole candidates (BH/BHC), transient X-ray
pulsars, X-ray novae, X-ray bursts, CVns, a considerable number of AGNs and so on. Automatic nova-alert and rapid
report system is starting up, while we have published more than 30 results publicly on GCN and ATel with manual
analysis. We are also releasing daily data more than 200 targets publicly.
Now MAXI has continued steady operation since the beginning of 2010 although capability of a part of X-ray
detectors is going down from initial ability. We have obtained some remarkable results concerning BH/BHC, X-ray
pulsars and AGNs. As one of the results XTE J1752-223, an X-ray nova accompanying a black hole candidate, has
revealed an evolution of accretion disc and high energy plasma from the data for seven-month observations.
In this paper we report the operation status of MAXI on the ISS as well as early several astronomical results.
S. Torii, M. Hareyama, N. Hasebe, K. Kasahara, S. Kobayashi, S. Kodaira, H. Murakami, S. Ozawa, S. Udo, N. Yamashita, K. Ebisawa, H. Fuke, J. Nishimura, Y. Saito, M. Takayanagi, H. Tomida, S. Ueno, T. Yamagami, K. Hibino, S. Okuno, T. Tamura, N. Tateyama, T. Kobayashi, T. Kotani, K. Yamaoka, A. Yoshida, Y. Shimizu, M. Takita, T. Yuda, Y. Katayose, M. Shibata, E. Kamioka, A. Kubota, K. Yoshida, M. Ichimura, S. Kuramata, Y. Tunesada, T. Terasawa, H. Kitamura, Y. Uchihori, Y. Komori, K. Mizutani, K. Munakata, A. Shiomi, J. Mitchell, A. Ericsson, T. Hams, J. Krizmanic, A. Moissev, M. Sasaki, J. Ormes, M. Cherry, T. Guzik, J. Wefel, W. Binns, M. Israel, H. Krawczynski, P. Marrocchesi, M. Gagliesi, G. Bigongiari, A. Caldarone, M. Kim, R. Cecchi, P. Maestro, V. Millucci, R. Zei, C. Avanzini, T. Lotadze, A. Messineo, F. Morsani, O. Adirani, L. Bonechi, P. Papini, E. Vannuccini, J. Chan, W. Gan, T. Lu, Y. Ma, H. Wang, G. Chen
KEYWORDS: Particles, Gamma radiation, Sensors, Space telescopes, Electroluminescence, Scintillators, Signal to noise ratio, Anisotropy, Telescopes, Solar energy
We are developing the CALorimetric Electron Telescope, CALET, mission for the Japanese Experiment Module
Exposed Facility, JEM-EF, of the International Space Station. Major scientific objectives are to search for the nearby
cosmic ray sources and dark matter by carrying out a precise measurement of the electrons in 1 GeV - 20 TeV and
gamma rays in 20 MeV - several 10 TeV. CALET has a unique capability to observe electrons and gamma rays over 1
TeV since the hadron rejection power can be larger than 105 and the energy resolution better than a few % over 100 GeV.
The detector consists of an imaging calorimeter with scintillating fibers and tungsten plates and a total absorption
calorimeter with BGO scintillators. CALET has also a capability to measure cosmic ray H, He and heavy ionsi up to
1000 TeV. It also will have a function to monitor solar activity and gamma ray transients. The phase A study has
started on a schedule of launch in 2013 by H-II Transfer Vehicle (HTV) for 5 year observation.
MAXI (Monitor of All-sky X-ray Image) is a payload on board the International Space Station,
and will be launched on April 2009.
We report on the current development status on MAXI, in particular on the two types of X-ray camera (GSC and SSC),
and the simulation results of the MAXI observation.
SSC is a CCD camera.
The moderate energy resolution enables us to detect the various emission peak including 0.5 keV oxygen line.
The averaged energy resolution at the CCD temperature of -70 deg is 144.5 eV (FWHM) for 5.9 keV X-ray.
GSC includes proportional gas counters, which have large X-ray detection area (5350cm2).
The averaged position resolution of 1.1mm at 8 keV enable us to determined the celestial position of bright sources
within the accuracy of 0.1 degree.
The simulation study involving the results of performance test exhibits the high sensitivity of MAXI as designed.
The Soft X-ray Imager (SXI) is the X-ray CCD detector system on board the NeXT mission that is to be launched around 2013. The system consists of a camera, an SXI-specific data processing unit (SXI-E) and a CPU unit commonly used throughout the NeXT satellite. All the analog signal handling is restricted within the camera unit, and all the I/O of the unit are digital.
The camera unit and SXI-E are connected by multiple LVDS lines, and SXI-E and the CPU unit will be connected by a SpaceWire (SpW) network. The network can connect SXI-E to multiple CPU units (the formal SXI CPU and neighbors) and all the CPU units in the network have connections to multiple neighbors: with this configuration, the SXI system can work even in the case that one SpW connection or the formal SXI CPU is down.
The main tasks of SXI-E are to generate the CCD driving pattern, the acquisition of the image data stream and HK data supplied by the camera and transfer them to the CPU unit with the Remote Memory Access Protocol (RMAP) over SpW. In addition to them, SXI-E also detects the pixels whose values are higher than the event threshold and both adjacent pixels in the same line, and send their coordinates to the CPU unit. The CPU unit can reduce its load significantly with this information because it gets rid of the necessity to scan whole the image to detect X-ray events.
Monitor of All-sky X-ray Image (MAXI) is an X-ray all-sky monitor,
which will be delivered to the International Space Station (ISS)
by a space shuttle crew in early 2009,
to scan almost the entire sky once every 96 minutes for
a mission life of two to five years. The detection sensitivity will be
5 mCrab (5σlevel) for a one-day MAXI operation, 2 mCrab for one week,
and 1 mCrab for one month, reaching a source confusion limit of 0.2 mCrab in two years.
In this paper, brief descriptions are presented for the MAXI mission and payload, and
three operation phases, 1) the launch-to-docking phase, 2) the initial in-orbit calibration phase,
and 3) the routine operation phase. We also describes the MAXI data product and its release plan for public users.
MAXI is the first payload to be attached on JEM-EF (Kibo exposed facility) of ISS. It provides an all sky X-ray image
every ISS orbit. If MAXI scans the sky during one week, it could make a milli-Crab X-ray all sky map excluding bright
region around the sun. Thus, MAXI does not only inform X-ray novae and transients rapidly to world astronomers if
once they occur, but also observes long-term variability of Galactic and extra-Galactic X-ray sources. MAXI also
provides an X-ray source catalogue at that time with diffuse cosmic X-ray background.
MAXI consists of two kinds of detectors, position sensitive gas-proportional counters for 2-30 keV X-rays and CCD
cameras for 0.5-10 keV X-rays. All instruments of MAXI are now in final phase of pre-launching tests of their flight
modules. We are also carrying out performance tests for X-ray detectors and collimators. Data processing and analysis
software including alert system on ground are being developed by mission team.
In this paper we report an overview of final instruments of MAXI and capability of MAXI.
Monitor of All-sky X-ray Image (MAXI) is an X-ray all-sky scanner, which will be attached on Exposed Facility of Japanese Experiment Module dubbed "Kibo" of International Space Station (ISS). MAXI will be launched by the Space Shuttle or the Japanese H-IIA Transfer Vehicle (HTV) in 2008. MAXI carries two types of X-ray cameras: Solid-state Slit Camera (SSC) for 0.5-10 keV and Gas Slit Camera (GSC) for 2-30 keV bands. Both have long narrow fields of view (FOV) made by a slit and orthogonally arranged collimator plates (slats). The FOV will sweep almost the whole sky once every 96 minutes by utilizing the orbital motion of ISS. Then the light curve of an X-ray point source become triangular shape in one transit. In this paper, we present the actual triangular response of the GSC collimator, obtained by our calibration. In fact they are deformed by gaps between the slats, leaning angle of the slats, and the effective width of the slats. We are measuring these sizes by shooting X-ray beams into the detector behind the collimator. We summarize the calibration and present the first compilation of the data to make the GSC collimator response, which will be useful for public users.
Monitor of All-sky X-ray Image(MAXI) is an X-ray all sky monitor, which will be attached to the Japanese Experiment Module (JEM) on the International Space Station (ISS) around the year 2008. MAXI carries two types of scientific instruments. The Gas Slit Camera(GSC) consists of twelve Xe filled one-dimensional position sensitive gas proportional counters sensitive to X-ray in 2-30 keV band. The Solid-state Slit Camera (SSC) is a set of X-ray CCD arrays sensitive to 0.5-10 keV photons. Both detectors are utilized in combination with a slit
and orthogonally arranged collimator plates to produce one-dimensional X-ray images along sky great circles. The instruments are now under fabrication and preflight testing. A detector response matrix (DRM) of GSC is also under development phase based on flight model calibration tests for counters and collimators. MAXI's
overall performance depends on not only hardware characteristics but on the fact that the field-of-view changes in time even during observations. To study this complicated situation, we are developing a software, DRM builder, and also a simulation software to evaluate "realistic" performance of GSC in ISS orbits.
Monitor of All-sky X-ray Image (MAXI) is an X-ray all-sky monitor,
which will be delivered to the International Space Station (ISS) in 2008, to scan almost the whole sky once every 96 minutes for a mission life of two years. The detection sensitivity will be 7~mCrab (5σ level) in one scan, and 1~mCrab for one-week accumulation. At previous SPIE meetings, we presented the development status
of the MAXI payload, in particular its X-ray detectors. In this paper, we present the whole picture of the MAXI system, including the downlink path and the MAXI ground system. We also examine the MAXI system components other than X-ray detectors from the point of view of the overall performance of the mission. The engineering model test of the MAXI X-ray slit collimator shows that we can achieve the position determination accuracy of <0.1 degrees, required for the ease of follow-up observations. Assessing the downlink paths, we currently estimates that the MAXI ground system receive more than 50% of the observational data in "real time" (with time delay of a few to ten seconds), and the rest of data with delay of 20 minutes to a few hours from detection, depending on the timing of downlink. The data will be processed in easily-utilised formats, and made open to public users through the Internet.
Monitor of All-sky X-ray Image (MAXI) is an astrophysical payload for
the Japanese Experiment Module (Kibo) on the International Space
Station (ISS). MAXI is designed for monitoring all sky in the X-ray band. MAXI consists of two X-ray detector systems: the Gas Slit Camera (GSC) and the Solid-state Slit Camera (SSC). The SSC consists of two CCD cameras: each contains 16 CCD chips. The CCD chip has 1024 x 1024 pixels and covers 25mm square. The thickness of depletion layer is 70 μm. These CCD chips are cooled down below -60° using a combination of the radiator and the peltier cooler. We have developed the engineering model (EM) of the MAXI/SSC. Combining with the EM electronics, we achieved the low readout noise (~5 e- rms) and a good energy resolution (150 eV at MnKα). We report the current status of the developments of the MAXI/SSC.
The current status is reported of the development of Monitor of All-sky X-ray Image and the measurement of its observational response. MAXI is a scanning X-ray camera to be attached to the Japanese Experiment Module of the International Space Station in 2008. MAXI is mainly composed of two kinds of instruments, GSC which is sensitive to the 2 - 30 keV photons, and SSC to the 0.5 - 10 keV ones. As an X-ray all-sky monitor, MAXI has an unprecedented sensitivity of 7 mCrab in one orbit scan, and 1 mCrab in one week. Using the engineering mode of the proportional counter and of the collimator for GSC, the observational response of GSC is extensively measured. The acceptable performances are obtained as a whole for both the collimator and the counter. The engineering models of the other part of MAXI are also constructed and the measurement of their performance is ongoing.
MAXI is an X-ray all-sky monitor which will be mounted on the Japanese Experimental Module (JEM) of the International Space Station (ISS) in 2008. The Gas Slit Camera (GSC) consists of 12 one-dimensional position sensitive proportional counters and the sensitivity will be as high as 1 mCrab for a one-week accumulation in the 2-30 keV band. In order to calibrate the detectors and electronic systems thoroughly before the launch, a fast and
versatile Ground Support Electronic (GSE) system is necessary. We have developed a new GSE based on VME I/O boards for a Linux workstation. These boards carry reconfigurable FPGAs of 100,000 gates, together with 16 Mbytes of SDRAM. As a demonstration application of using this GSE, we have tested the positional response of a GSC engineering counter. We present a schematic view of the GSE highlighting the functional design, together with a future vision of the ground testing of the GSC flight counters and digital associated processor.
MAXI, Monitor of All-sky X-ray Image, is an X-ray observatory on the Japanese Experimental Module (JEM) Exposed Facility (EF) on the international space station. MAXI is a slit scanning camera which consists of two kinds of X-ray detectors: one is a one-dimensional position-sensitive proportional counter with a total area of ~5000 cm2, the Gas Slit Camera (GSC), and the other is an X-ray charge-coupled device (CCD) array with a total area ~200 cm2, the Solid-state Slit Camera (SSC). The GSC subtends a field of view with an angular dimension of 1degree X 180degree while the SSC subtends a field of view with an angular dimension of 1degree times a little less than 180degree. In the course of one station orbit, MAXI can scan almost the entire sky with a precision of 1degree and with an X-ray energy range of 0.5-30keV. So far, we have fabricate 25 CCDs for flight candidates and production of devices are still continued. We need to select 32 and 16 CCDs to install a flight camera and a spare camera, respectively. We therefore developed the efficient screening method using 55Fe sources. The key parameters of the CCDs for the screening are readout noise, dark current, charge transfer efficiency, and detection efficiency. The performance criteria used to rank devices are discussed.
We report on the background study of the CCD camera of the MAXI mission on-board the International Space Station. Our study is based on the simulation using the Geant4 toolkit. We studied the background from cosmic electron in 3-100MeV range mainly. Our result shows that the design of collimator and slit is important to reduce the X-ray background (mainly bremsstrahlung). Thick collimator and slit is preferable. Material is also important.
We have investigated the radiation damage effects on a CCD to be employed in the Japanese X-ray astronomy mission including the
Monitor of All-sky X-ray Image (MAXI) onboard the International Space
Station (ISS). The X-ray CCD camera, ACIS, onboard Chandra have been seriously damaged by low energy protons having energy of ~150,keV since low energy protons release their energy mainly at the charge transfer channel, resulting a decrease of the charge transfer efficiency. We thus focused on the low energy protons in our experiments. A 171 keV to 3.91 MeV proton beam was irradiated
to a given device. We measured the degradation of the charge transfer
inefficiency (CTI) and dark current as a function of incremental
fluence. A 292 keV proton beam degraded the CTI most seriously.
Taking into account the proton energy dependence of the CTI, we
confirmed that the transfer channel has a lowest radiation tolerance.
On the other hand, dark current increased after proton irradiation
for all energies except 171 keV. We have also developed the
different device architectures to reduce the radiation damage in
orbit. We then investigated the spatial distribution of the low energy protons in the orbit of the ISS. We found that their density has a peak around l ~20° and b ~-55° independent of the attitude. The peak value is roughly two orders of magnitude larger than that at the South Atlantic Anomaly. Taking into account the new anomaly and orbit of the ISS, we estimated the charge transfer inefficiency of MAXI CCDs to be 1.1 × 10-5 per each transfer after two years of mission life in the worse case analysis if the highest radiation-tolerant device is employed. This value is well within the requirement and we have confirmed the high radiation-tolerance of MAXI CCDs.
We have investigated the radiation damage effects on a CCD to be employed in the Japanese X-ray astronomy mission including the Monitor of All-sky X-ray Image (MAXI) onboard the International Space Station (ISS). The X-ray CCD camera, ACIS, onboard Chandra have been seriously damaged by low energy protons having energy of ~150 keV since low energy protons release their energy mainly at the charge transfer channel, resulting a decrease of the charge transfer efficiency. We thus focused on the low energy protons in our experiments. We measured the degradation of the charge transfer efficiency and the dark current as a function of incremental fluence. We have also developed the different device architectures to minimize the radiation damage in orbit. We thus compared the differences of performance after proton irradiation. We then investigated the spatial distribution of the low energy protons in the orbit of the ISS. We found that their density has a peak around l~20° and b~-55° independent of the attitude. The peak value is roughly two orders of magnitude larger than that at the South Atlantic Anomaly. Taking into account the new anomaly and orbit of the ISS, we estimated the charge transfer inefficiency of MAXI CCDs to be 1.1 × 10-5 per each transfer after two years of mission life in the worse case analysis if the highest radiation-tolerant device is employed. This value is well within the requirement and we have confirmed the high radiation-tolerance of MAXI CCDs.
MAXI, Monitor of All-sky X-ray Image, is an X-ray observatory on the Japanese Experimental Module (JEM) Exposed Facility (EF) on the International Space Station (ISS). MAXI is a slit scanning camera which consists of two kinds of X-ray detectors: one is a one-dimensional position-sensitive proportional counter with a total area of approximately 5000 cm2, the Gas Slit Camera (GSC), and the other is an X-ray CCD array with a total area approximately 200 cm2, the Solid-state Slit Camera (SSC). The GSC subtends a field of view with an angular dimension of 1 degree(s) times 180 degree(s) while the SSC subtends a field of view with an angular dimension of 1 degree(s) times a little less than 180 degree(s). In the course of one station orbit,MAXI can scan almost the entire sky with a precision of 1 degree(s) and with an X-ray energy range of 0.5- 30keV. We have developed an engineering model (EM) for all components of the SSC. Their performance test is ongoing. We have also developed several kinds of CCDs fabricated from different wafers. Since the thermal condition of the ISS is not suitable for the CCD operation, the operating temperature of the CCD estimated to be -85 approximately -50 degree(s) at the end of mission life. We therefore carefully need to choose CCD considering not only detection efficiency and readout noise but also the dark current. We report here the current status of the EM of the SSC and the X-ray responsibity of CCDs.
Monitor of the All-sky X-ray Image (MAXI) is the first payload for the Japanese Experiment Module (JEM) on the International Space Station (ISS). It is designed for monitoring all-sky in the X-ray band. Its angular resolution and scanning period are about 1 arc-degree and 100 minutes, respectively. MAXI employs two types of X-ray camera. One is Gas Slit Camera (GSC), the detectors of which are one dimensional position sensitive proportional counters. Another is Solid-state Slit Camera (SSC). We mainly report on SSC. We employ a pair of SSCs, each of which consists of 16 CCD chips. Each CCD chips has 1024 X 1024 pixels, and the pixel size is 24 X 24 micrometer. The CCDs are to be operated at -60 degrees Celsius using Peltier coolers. Optical light is blocked by aluminum coat on the CCDs instead of fragile aluminized film. SSC achieves an energy resolution of 152 eV in FWHM at 5.9 keV. The energy range is 0.5 - 10 keV.
Monitor of All-sky X-ray Image (MAXI) is the first astrophysical payload which will be mounted on the Japanese Experiment Module Exposed Facility of International Space Station in 2004. It is designed for monitoring all-sky in the x-ray band by scanning with slat collimators and slit apertures. Its angular resolution and scanning period are approximately 1 arc degree and 90 minutes, respectively. MAXI employs two types of X-ray camera. One is Gas slit Camera (GSC), the detectors of which are 1D position sensitive proportional counters. Its position resolution is approximately 1.0 mm along carbon anode wires. GSC covers the 2.0 - 30 keV energy band. We have found an interesting feature in the energy response: monochromatic X-rays are detected with a peculiar hard tail in the spectra. The physical mechanism causing the hard tail is still unclear. The other camera is Solid-state Slit Camera (SSC). We employ a pair of SSCs, each of which consists of sixteen CCD chips. Each CCD has 1024 X 1024 pixels, and each pixel is 24 X 24 micrometers. The CCDs are to be operated at -60 degree using Peltier coolers. SSC covers an energy range of 0.5 - 10.0 keV. The test counters and test chips are evaluated in NASDA, Riken, and Osaka-University. The continuous Ethernet down link will enable us to alert the astronomers in all over the world to the appearance of X-ray transients, novae, bursts, flares etc. In this paper we will report on the current status of the MAXI mission.
Monitor of All-Sky X-ray Image (MAXI) is the first astrophysical payload for the Japanese Experiment Module (JEM) on the International Space Station. It is designed for monitoring all sky in the x-ray band. Two kinds of x-ray detectors, the gas slit camera and the solid-state slit camera, are employed. The former is the gas proportional counter with 1D position sensitivity and the latter is the x-ray CCD. We have designed and constructed the engineering models of both detectors. We have also developed an x-ray irradiation facility in the Tsukuba Space Center of National Space Development Agency of Japan. We report the status of the mission and introduce the x-ray irradiation facility.
We report on the x-ray response function of the x-ray CCD camera (XIS) on-board the x-ray Astronomical Satellite, Astro-E, which will be launched in February of 2000. XIS is prepared by an international team, comprising MIT, ISAS, Osaka Univ. and Kyoto Univ. We evaluate the x-ray response on the high energy band of 1.5-10 keV. Fluorescent lines from Al, Cl, Ti, Ni, Fe, Zn are irradiated on the CCD chips, and are use to construct the response function. Details of the response function; energy-scale linearity, energy resolution, quantum efficiency and etc., are given as a function of incident x-ray energies. The response function is also demonstrated to depend largely on event-selection and re-construction criteria.
We studied the proton damage effects of the x-ray CCD. We have measured x-ray CCD performances after the irradiation of energies at 2 and 9.5 MeV, and confirmed clear degradation of charge transfer efficiency (CTE) and the energy resolution. To recover degraded CTE and the energy resolution, we tried the charge injection technique, and found the improvement of CTI and the energy resolution to be one-quarter and one-third, respectively. We also estimated the energy level of the deep trap, which causes the quantization of the dark current from the radiation-damaged pixels. The trap energy level is about 0.57 eV, or near the center of forbidden band.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.