Understanding and reducing in-orbit instrumental backgrounds are essential to achieving high sensitivity in hard x-ray astronomical observations. The observational data of the Hard X-ray Imager (HXI) onboard the Hitomi satellite provide useful information on the background components due to its multilayer configuration with different atomic numbers: the HXI consists of a stack of four layers of Si (Z = 14) detectors and one layer of cadmium telluride (CdTe) (Z = 48, 52) detector surrounded by well-type Bi4Ge3O12 active shields. Based on the observational data, the backgrounds of the top Si layer, the three underlying Si layers, and the CdTe layer are inferred to be dominated by different components, namely, low-energy electrons, albedo neutrons, and proton-induced radioactivation, respectively. Monte Carlo simulations of the in-orbit background of the HXI reproduce the observed background spectrum of each layer well, thereby quantitatively verifying the above hypothesis. In addition, we suggest the inclusion of an electron shield to reduce the background.
The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.
The Hitomi (ASTRO-H) mission is the sixth Japanese X-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. After a successful launch on 2016 February 17, the spacecraft lost its function on 2016 March 26, but the commissioning phase for about a month provided valuable information on the on-board instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.
The 6th Japanese X-ray satellite, ASTRO-H, is scheduled for launch in 2015. The hard X-ray focusing imaging system will observe astronomical objects with the sensitivity for detecting point sources with a brightness of 1/100,000 times fainter than the Crab nebula at > 10 keV. The Hard X-ray Imager (HXI) is a focal plane detector 12 m below the hard X-ray telescope (HXT) covering the energy range from 5 to 80 keV. The HXI is composed of a stacked Si/CdTe semiconductor detector module and surrounding BGO scintillators. The latter work as active shields for efficient reduction of background events caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we describe the detector system, and present current status of flight model development, and performance of HXI using an engineering model of HXI.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions developed by the Institute of Space and Astronautical Science (ISAS), with a planned launch in 2015. The ASTRO-H mission is equipped with a suite of sensitive instruments with the highest energy resolution ever achieved at E > 3 keV and a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. The simultaneous broad band pass, coupled with the high spectral resolution of ΔE ≤ 7 eV of the micro-calorimeter, will enable a wide variety of important science themes to be pursued. ASTRO-H is expected to provide breakthrough results in scientific areas as diverse as the large-scale structure of the Universe and its evolution, the behavior of matter in the gravitational strong field regime, the physical conditions in sites of cosmic-ray acceleration, and the distribution of dark matter in galaxy clusters at different redshifts.
The Hard X-ray Imager and the Soft Gamma-ray Detector, onboard the 6th Japanese X-ray satellite ASTRO-H, aim at unprecedentedly-sensitive observations in the 5–80 keV and 40–600 keV bands, respectively. Because their main sensors are composed of a number of semi-conductor devices, which need to be operated in a temperature of –20 to –15◦C, heat generated in the sensors must be efficiently transported outwards by thermal conduction. For this purpose, we performed thermal design, with the following three steps. First, we additionally included thermally-conductive parts, copper poles and graphite sheets. Second, constructing a thermal mathematical model of the sensors, we estimated temperature distributions in thermal equilibria. Since the model had rather large uncertainties in contact thermal conductions, an accurate thermal dummy was constructed as our final step. Vacuum measurement with the dummy successfully reduced the conductance uncertainties. With these steps, we confirmed that our thermal design of the main sensors satisfies the temperature requirement.
The Soft Gamma-ray Detector (SGD) is one of observational instruments onboard the ASTRO-H, and will provide 10 times better sensitivity in 60{600 keV than the past and current observatories. The SGD utilizes similar technologies to the Hard X-ray Imager (HXI) onboard the ASTRO-H. The SGD achieves low background by constraining gamma-ray events within a narrow field-of-view by Compton kinematics, in addition to the BGO active shield. In this paper, we will present the results of various tests using engineering models and also report the flight model production and evaluations.
ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature wide energy band (60–600 keV) at a background level 10 times better than the current instruments on orbit. The SGD is complimentary to ASTRO-H’s Hard X-ray Imager covering the energy range of 5–80 keV. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive to the gamma-ray polarization, opening up a new window to study properties of gamma-ray emission processes. In this paper, we will present the detailed design of the SGD and the results of the final prototype developments and evaluations. Moreover, we will also present expected performance based on the measurements with prototypes.
The Hard X-ray Imager (HXI) is one of the four detectors on board the ASTRO-H mission (6th Japanese X-ray satellite), which is scheduled to be launched in 2014. Using the hybrid structure composed of double-sided silicon strip detectors and a cadmium telluride double-sided strip detector, both with a high spatial resolution of 250 μm. Combined with the hard X-ray telescope (HXT), it consists a hard X-ray imaging spectroscopic instrument covering the energy range from 5 to 80 keV with an effective area of <300 cm2 in total at 30 keV. An energy resolution of 1–2 keV (FWHM) and lower threshold of 5 keV are both achieved with using a low noise front-end ASICs. In addition, the thick BGO active shields surrounding the main detector package is a heritage of the successful performance of the Hard X-ray Detector on board the Suzaku satellite. This feature enables the instrument to achieve an extremely good reduction of background caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we present the detector concept, design, latest results of the detector development, and the current status of the hardware.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated
by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the highenergy
universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV.
These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3–12 keV with
high spectral resolution of ΔE ≦ 7 eV, enabled by a micro-calorimeter array located in the focal plane of
thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5–80 keV, located in the focal plane of
multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4–12 keV,
with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera
type soft gamma-ray detector, sensitive in the 40–600 keV band. The simultaneous broad bandpass, coupled
with high spectral resolution, will enable the pursuit of a wide variety of important science themes.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated
by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the
high-energy universe by performing high-resolution, high-throughput spectroscopy with moderate angular
resolution. ASTRO-H covers very wide energy range from 0.3 keV to 600 keV. ASTRO-H allows a combination
of wide band X-ray spectroscopy (5-80 keV) provided by multilayer coating, focusing hard X-ray
mirrors and hard X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3-12 keV)
provided by thin-foil X-ray optics and a micro-calorimeter array. The mission will also carry an X-ray CCD
camera as a focal plane detector for a soft X-ray telescope (0.4-12 keV) and a non-focusing soft gamma-ray
detector (40-600 keV) . The micro-calorimeter system is developed by an international collaboration led
by ISAS/JAXA and NASA. The simultaneous broad bandpass, coupled with high spectral resolution of
ΔE ~7 eV provided by the micro-calorimeter will enable a wide variety of important science themes to be
pursued.
The Soft X-ray Spectrometer (SXS) is a cryogenic high resolution X-ray spectrometer onboard the X-ray astronomy
satellite ASTRO-H. The detector array is cooled down to 50 mK using a 3-stage adiabatic demagnetization
refrigerator (ADR). The cooling chain from room temperature to the ADR heat-sink is composed of superfluid
liquid He, a 4He Joule-Thomson cryocooler, and 2-stage Stirling cryocoolers. It is designed to keep 30 L of liquid
He for more than 3 years in the nominal case. It is also designed with redundant subsystems throughout from
room temperature to the ADR heat-sink, to alleviate failure of a single cryocooler or loss of liquid He.
The Hard X-ray Imager (HXI) is one of four detectors on board the ASTRO-H mission (6th Japanese X-ray
satellite), which is scheduled to be launched in 2014. Using the hybrid structure composed of double-sided silicon
strip detectors and a cadmium telluride double-sided strip detector, the instrument fully covers the energy range
of photons collected with the hard X-ray telescope up to 80 keV with a high quantum efficiency. High spatial
resolution of 250 μm and an energy resolution of 1-2 keV (FWHM) are both achieved with low noise front-end
ASICs. In addition, the thick BGO active shields surrounding the main detector package is a heritage of the
successful performance of the Hard X-ray Detector on board the Suzaku satellite. This feature enables the
instrument to achieve an extremely high background reduction caused by cosmic-ray particles, cosmic X-ray
background, and in-orbit radiation activation. In this paper, we present the detector concept, design, latest
results of the detector development, and the current status of the hardware.
ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage
and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will
feature wide energy band (40-600 keV) at a background level 10 times better than the current instruments on
orbit. SGD is complimentary to ASTRO-H's Hard X-ray Imager covering the energy range of 5-80 keV. The
SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield
where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as
a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good
energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due
to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive
to the gamma-ray polarization, opening up a new window to study properties of gamma-ray emission processes.
The ASTRO-H mission is approved by ISAS/JAXA to proceed to a detailed design phase with an expected
launch in 2014. In this paper, we present science drivers and concept of the SGD instrument followed by detailed
description of the instrument and expected performance.
Hard X-ray Detector (HXD) onboard Suzaku, the Japanese 5th X-ray observatory, consists of 64 PIN photo
diodes with 2 mm thickness (10-70 keV) and 16 phoswich detectors using 5 mm-thick GSO scintillators and
BGO active collimators (40-600 keV), and these are surrounded by 20 units of BGO Active shields. All the
detector units have been working well with no significant troubles in four and a half years since the launch
on July 2005, and given many important scientific results. In this paper, we report the recent status of on-orbit
calibrations for PIN/GSO detectors. For the PIN, analog/digital threshold levels of both in-orbit and
on-ground are raised up to avoid the increasing noise events due to in-orbit radiation damage. For the GSO,
the accuracy of the energy scale and modeling of gain variations are improved, and newly calibrated data set
including background files and response matrices are released on April 2010.
The Soft X-ray Spectrometer (SXS) onboard the NeXT (New exploration X-ray Telescope) is an X-ray spectrometer
utilizing an X-ray microcalorimeter array. Combined with the soft X-ray telescope of 6 m focal length,
the instrument will have a ~ 290cm2 effective at 6.7 keV. With the large effective area and the energy resolution
as good as 6 eV (FWHM), the instrument is very suited for the high-resolution spectroscopy of iron K emission
line. One of the major scientific objectives of SXS is to determine turbulent and/or macroscopic motions of the
hot gas in clusters of galaxies of up to z ~ 1. The instruments will use 6 × 6 or 8 × 8 format microcalorimeter
array which is similar to that of Suzaku XRS. The detector will be cooled to a cryogenic temperature of 50 mK
by multi-stage cooling system consisting of adiabatic demagnetization refrigerator, super fluid He, a 3He Joule
Thomson cooler, and double-stage stirling cycle cooler.
The SXS (Soft X-ray Spectrometer) onboard the coming Japanese X-ray satellite NeXT (New Exploration Xray
Telescope) and the SXC (Spectrum-RG X-ray Calorimeter) in Spectrum-RG mission are microcalorimeter
array spectrometers which will achieve high spectral resolution of ~ 6 eV in 0.3-10.0 keV energy band. These
spectrometers are well-suited to address key problems in high-energy astrophysics. To achieve these high spectral
sensitivities, these detectors require to be operated under 50 mK by using very efficient cooling systems including
adiabatic demagnetization refrigerator (ADR). For both missions, we propose a two-stage series ADR as a cooling
system below 1 K, in which two units of ADR consists of magnetic cooling material, a superconducting magnet,
and a heat switch are operated step by step. Three designs of the ADR are proposed for SXS/SXC. In all three
designs, ADR can attain the required hold time of 23 hours at 50 mK and cooling power of 0.4μW with a low
magnetic fields (1.5/1.5 Tesla or 2.0/3.0 Tesla) in a small configuration (180 mmφ× 319 mm in length).
We also fabricated a new portable refrigerator for a technology investigation of two-stage ADR. Two units of
ADR have been installed at the bottom of liquid He tank. By using this dewar, important technologies such as an operation of two-stage cooling cycle, tight temperature control less than 1 μK (in rms) stability, a magnetic
shielding, saltpills, and gas-gap heat switches are evaluated.
T. Kitaguchi, M. Kokubun, M. Kawaharada, M. Murashima, R. Miyawaki, T. Yanagida, T. Itoh, S. Hirakuri, T. Enoto, M. Sato, K. Makishima, T. Takahashi, K. Nakazawa, S. Watanabe, T. Tanaka, Y. Terada, T. Tamagawa, A. Kubota, Y. Fukazawa, M. Mizuno, H. Takahashi, T. Yamasaki, M. Tashiro, Y. Endo, K. Yamaoka, T. Murakami, D. Yonetoku, T. Kamae
The hard X-ray detector (HXD-II) is one of the scientific payloads onboard Suzaku, the 5th Japanese cosmic X-ray satellite. After the launch in July 2005, all the HXD-II components, including the sensors and analog/digital electronics, have been working normally. In order to archive the maximum performance of the HXD-II, especially the GSO/BGO well-type phoswich counters, extensive in-orbit qualification and calibration have been carried out utilizing the data acquired in early operations. Major items of these efforts include; to estimate the circuit dead time, calibrate energy scale, optimize the event selection criteria for background reduction, study the background, and examine the detector response.
As a result of these in-orbit calibrations, the HXD-II background in the 10-600 keV range has been successfully lowered to (0.5-5.0) x 10-4 cs-1 keV-1 cm-2 This the lowest among the background ever achieved in orbit by cosmic hard x-ray detectors.
The hard X-ray detector (HXD) onboard Suzaku covers an energy range of 8-700 keV, and thus in combination with the CCD camera (XIS) gives us an opportunity of wide-band X-ray observations of celestial sources with a good sensitivity over the 0.3-700 keV range. All of 64 Si-PIN photo diodes, 16 GSO/BGO phoswich scintillators, and 20 anti-coincidence BGO scintillators in the HXD are working well since the Suzaku launch on July 2005. The rejection of background events is confirmed to be as effective as expected, and accordingly the HXD achieved the lowest background level of the previously or currently operational missions sensitive in the comparable energy range. The energy and angular responses and timing have been continuously calibrated by the data from the Crab nebula, X-ray pulsars, and other sources, and at present several % accuracy is obtained. Even though the HXD does not perform simultaneous background observations, it detected weak sources with a flux as low as ~0.5 mCrab; stars, X-ray binaries, supernova remnants, active galactic nuclei, and galaxy clusters. Extensive studies of background subtraction enables us to study weaker sources.
The Hard X-ray Detector (HXD-II), one of instruments onboard the Astro-E2 satellite to be launched in February 2005, is in the final stage of its development. The HXD-II probes the universe in the energy range of 10-600 keV with a sensitivity by an order of magnitude better than those of previous missions. The assembly of the HXD-II completed in January 2004, followed by a series of pre-launch qualification tests. As a result, the design goals of the HXD-II have been met. These include; a background level of 5 x 10-6 counts/s/keV/cm2 at 200 keV for GSO and 1 x 10-5 counts/s/keV/cm2 at 30 keV for PIN; energy resolutions of 2.9 keV (PIN diode, at 59.5 keV) and 10% (GSO scintillator, at 662 keV); and low energy thresholds of 10 keV for PIN diodes and 30 keV for GSO scintillators. The measured background predicts a continuum sensitivity of a few x 10-6 photons/s/keV/cm2. Anti-Counter units surrounding the HXD-II provide 50 keV-5 MeV information on gamma-ray bursts and bright X-ray transients.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.