Publisher's Note: This paper, originally published on 22 August 2024, was replaced with a corrected/revised version on 20 September 2024. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.
The KOYOH satellite, launched on December 1, 2023, aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base, is a 50-kg class microsatellite designed to advance the understanding of short gamma-ray bursts (GRBs) and their association with gravitational wave (GW) events. The satellite operates in a Sun-Synchronous Orbit (SSO), equipped with the Transient Localization Experiment (T-LEX) and the Gamma-ray Detector (KGD). T-LEX, a wide-field X-ray imaging detector, and KGD, a wide-field gamma-ray detector, are designed to detect and localize GRBs and other high-energy transients. Following its launch and initial deployment, the satellite successfully established communication links and confirmed the operational status of its subsystems. Initial telemetry data verified the deployment of the Solar Array Paddles (SAP) and correct orientation towards the Sun. The satellite’s power systems were confirmed to be functioning nominally. Subsequent tests established the functionality of the mission instruments. The KGD exhibited a count rate of about 300-500 counts/sec at low latitudes, while T-LEX showed a count rate of approximately 200-300 counts/sec in total. These initial results confirm the successful detection of X-ray and gamma-ray photons by both instruments in orbit. This paper details the design, launch, initial operations, and early mission results of the KOYOH satellite, highlighting its contributions to multi-messenger astronomy.
The HiZ-GUNDAM mission is one of the candidates for the JAXA’s competitive M-class missions. HiZ-GUNDAM revolutionizes our understanding of the high redshift universe and promotes multi-messenger astronomy. Combining a highly sensitive wide-field X-ray monitor, a near-infrared telescope, and autonomous spacecraft slew capability makes a powerful machine to hunt interesting X-ray transients and immediately identify their counterparts in near-infrared. The Wide Field X-ray Monitor (WFXM) is the main instrument to search for the transients in the soft X-ray band. WFXM comprises lobster-eye optics (LEO) and pnCCD as an X-ray imager. LEO has a size of 40 mm x 40 mm and a radius of curvature of 600 mm. We are planning to use the LEO manufactured by Photonis Inc. One WFXM module has three by three LEOs, which cover a field of view of 12 deg x 12 deg. The current baseline design is composed of 16 modules to cover 0.7 sr sky. The candidate focal imager is the pnCCD detector by PNSensor Inc. We will present the current status and prospects of the WFXM.
HiZ-GUNDAM is a future satellite mission whose mission concept was approved by ISAS/JAXA, and it is one of the future satellite candidates of JAXA’s competitive medium-class mission. HiZ-GUNDAM will lead time-domain astronomy in 2030s, and its key sciences are (1) exploration of the early universe with high-redshift gamma-ray bursts, and (2) contribution to the multi-messenger astronomy. Two mission payloads are aboard HiZ-GUNDAM to realize these two scientific issues. The wide field X-ray monitors which consist of Lobster Eye optics array and focal imaging sensor, monitor ~0.5 steradian field of view in 0.5–4 keV energy range. The near infrared telescope with an aperture size of 30 cm in diameter performs simultaneous 5-band photometric observation in 0.5–2.5 μm wavelength with Koester’s prism for X-ray transients discovered by Wide Field X-ray Monitor. In this paper, we introduce the mission overview of HiZ-GUNDAM while the information contained herein may change in future studies.
HiZ-GUNDAM is a future satellite mission designed for exploring the early universe using gamma-ray bursts (GRBs). The satellite is equipped with two main instruments: a wide field X-ray monitor (WFXM) and a near infrared telescope (NIRT). And its mission data processing unit (MPU) plays an important role in data processing. When a transient source occurs and the X-rays enter the WFXM, a cross-shaped image is produced on the focal plane image sensor. Once the WFXM’s data are sent to the MPU, the direction of the source is determined from the center position. Furthermore, if there are no known stellar objects in this direction and if they are not hot pixels or other anomalies, the event is classified as a GRB candidate. To evaluate the software for this series of judgments, we investigated the angular resolution by this software algorithm utilizing the cross image obtained by the lobster eye optics (LEO).
HiZ-GUNDAM is a future satellite mission for gamma-ray burst observations. One of the mission instruments is the wide-field X-ray monitor with a field of view (FoV) of 0.6 steradian at 0.4–4.0 keV, consisting of Lobster Eye Optics (LEO) and pnCCD image sensors. LEOs need to be spatially well-aligned to achieve both of wide FoV and fine position accuracy of < 3 arcmin. To address this challenge, we explored an alignment method with X-rays and developed an optical frame. This study reports on the evaluation of the optical frame, our alignment method, and x-ray performance of the optical system.
HiZ-GUNDAM is a future satellite mission for gamma-ray burst observations. One of the mission instruments is the wide-field X-ray monitor with a field of view (FoV) of 0.5 steradian at 0.4 to 4.0 keV, consisting of Lobster Eye Optics (LEO) and focal-imaging pixel sensors. LEOs need to be spatially well-aligned to achieve both a wide FoV and fine accuracy in determining the location of X-ray transients. An alignment method is being investigated with visible light and shape measurements. We developed a titanium frame for positioning two LEO segments and estimated visible light on LEOs. We will report development of the alignment method.
HiZ-GUNDAM is a candidate of future satellite mission for the Japanese competitive M-class mission by ISAS/JAXA to progress a time-domain astronomy and multi-messenger astronomy with gamma-ray burst (GRB) phenomena. The science goals are (1) to probe the early universe with high redshift GRBs at z > 7, and (2) to promote the gravitational wave astronomy with short GRB. HiZ-GUNDAM has been successfully passed a review for pre-project candidate in November 2021, and its team is working on the concept study. We will introduce the sciences and mission overview of HiZ-GUNDAM.
All-sky surveys are crucial to discover transient objects. In reality, however, it is impossible to achieve high sensitivity, high cadence, wide sky coverage, and broad wavelength range at the same time. This is where observations with small telescopes can come in significant, as small telescopes often can make high cadence monitoring and flexible operations, playing a complementary role to large observatories. We plan to launch a new 6U-size CubeSat X-ray observatory, NinjaSat, in 2022 to conduct a flexible X-ray observation program. The satellite is equipped with two identical non-imaging Gas Multiplier Counters (GMCs) sensitive to X-rays in the 2–50 keV band with a total effective area of 36 cm2 at 6 keV. Coupled with X-ray collimators of a 2.1° field-of-view, NinjaSat is suitable for flexible multi-wavelength coordinated observations of bright (⪆10 mCrab) X-ray sources with particular emphasis on their time variability. An example of our targets is one of the brightest celestial X-ray objects, Scorpius X-1, which hosts a fast-spinning neutron star and is a candidate source for coherent gravitational waves. The quasi-periodic oscillation (QPO) of neutron-star systems is considered to carry important information on the neutron star’s rotational frequency, which is useful for sensitive gravitational-wave searches. Scorpius X-1, being one of the brightest, provides the best opportunity to study the QPO. Combining with coordinated simultaneous monitoring observations with recently-developed fast optical photometry, the mechanism of the mass accretion of the disk can also be studied. We plan to use NinjaSat also for space science education, particularly X-ray astronomy, for students and the general public.
We propose an optimized source detection algorithm with an X-ray wide-field imaging detector based on lobstereye (LE) optics to realize better sensitivity. In our method, we take two parts of region of interest (ROI) in which we test the number of X-ray events exceed a certain threshold level. Since we compose the condition that the excesses of the photons are required for the both parts of the ROI, we can lower the detection threshold level with a less false alert rate. We take two comparative methods in which the ROI consists of one part, and compared the performance of them. We formulated an appropriate threshold level and sensitivity for two comparable detection methods as well as our proposed method. We found that the detection sensitivity of our method is improved by a factor of about 30% at most than that of the comparable methods in the nominal case of the proposed HiZ-GUNDAM mission. We also found that which detection method has better sensitivity depends on the background event rate. We checked that the formulation works well by comparing to a Monte Carlo simulation in the case of the HiZ-GUNDAM condition. The formula can be applied to any future missions with LE optics to design which detection algorithm is suitable for optimizing sensitivity.
Lobster eye optics (LEO) is an optics composed of many pores aligned along a sphere. Since the LEO can cover a wide field of view with good sensitivity in soft X-rays, it makes an ideal telescope to search for interesting transient sources such as high redshift gamma-ray bursts, electromagnetic counterparts of gravitational wave sources, and so on. We obtained two LEOs of different specifications manufactured by Photonis inc. (hereafter PLEO) and NNVT inc. (hereafter NLEO) and evaluated their X-ray performance. We confirmed that both LEOs focus parallel X-rays and make an image containing a center spot, cross arms, and scattering components at the focal plane, as suggested by Angel (1979). The full widths at half maximum of the measured point spread functions are ∼ 11′ (PLEO) and ∼ 4 ′ (NLEO). The effective areas of the central component at 1.5 keV are 1.37 cm2 (PLEO) and 2.58 cm2 (NLEO). Based on our developed simulator calibrated using our X-ray measurements, the position accuracy of the PLEO is expected to be less than 1′ if the number of detected photons is more than 500.
The source position determination method of the multiplexing lobster-eye optics (MuLE), which is a newly proposed configuration of the Lobster-Eye (LE) optics to reduce the number of focal plane detectors significantly, was developed. In the MuLE configuration, X-rays came from different field-of-views (FoVs) were focused on a single imager. To separate the multiplexed FoVs, the optics was designed so that cross-like responses of LE mirror in different FoVs had different azimuthal rotation angles. In this paper, we show the method to determine the rotation angles and verify the FoV discrimination power by using a ray tracing simulation. The configuration we assumed in the simulation was nine multiplexed FoVs projecting onto a single imager (nine-segment MuLE optics) with a 30 cm focal length and a 9×9 cm2 effective area of each LE segment. One LE segment covers 9.6°× 9.6° FoV and the total FoV of the nine-segment MuLE configuration was 9 times of that. Our method provided 100% correct FoV discrimination at the 5σ detection limit flux (35–70 mCrab) for a transient source with a duration of 100 s except for the edge of the FoV.
HiZ-GUNDAM is a future satellite mission which will lead the time-domain astronomy and the multi-messenger astronomy through observations of high-energy transient phenomena. A mission concept of HiZ-GUNDAM was approved by ISAS/JAXA, and it is one of the future satellite candidates of JAXA’s medium-class mission. We are in pre-phase A (before pre-project) and elaborating the mission concept, mission/system requirements for the launch in the late 2020s. The main themes of HiZ-GUNDAM mission are (1) exploration of the early universe with high-redshift gamma-ray bursts, and (2) contribution to the multi-messenger astronomy. HiZ-GUNDAM has two kinds of mission payload. The wide field X-ray monitors consist of Lobster Eye optics array and focal imaging sensor, and monitor ~1 steradian field of view in 0.5 – 4 keV energy range. The near infrared telescope has an aperture size 30 cm in diameter, and simultaneously observes four wavelength bands between 0.5 – 2.5 μm. In this paper, we introduce the mission overview of HiZ-GUNDAM.
We propose a concept of multiplexing lobster-eye (MuLE) optics to achieve significant reductions in the number of focal plane imagers in lobster-eye (LE) wide-field x-ray monitors. In the MuLE configuration, an LE mirror is divided into several segments and the x-rays reflected on each of these segments are focused on a single image sensor in a multiplexed configuration. If each LE segment assumes a different rotation angle, the azimuthal rotation angle of a cross-like image reconstructed from a point source by the LE optics identifies the specific segment that focuses the x-rays on the imager. With a focal length of 30 cm and LE segments with areas of 10 × 10 cm2, ∼1 sr of the sky can be covered with 36 LE segments and only four imagers (with total areas of 10 × 10 cm2). A ray tracing simulation was performed to evaluate the nine-segment MuLE configuration. The simulation showed that the flux (0.5 to 2 keV) associated with the 5σ detection limit was ∼2 × 10 − 10 erg cm − 2 s − 1 (10 mCrab) for a transient with a duration of 100 s. The simulation also showed that the direction of the transient for flux in the range of 14 to 17 mCrab at 0.6 keV was determined correctly with a 99.7% confidence limit. We conclude that the MuLE configuration can become an effective on-board device for small satellites for future x-ray wide-field transient monitoring.
We are developing a micro satellite, Kanazawa-SAT3 , to be launched in FY2019. The main purpose of the mission is to localize X-ray transients coincide with gravitational wave events, e.g. short gamma-ray bursts, and to investigate the formation of extreme space-time of black holes and the origin of relativistic jet. We are developing a wide field X-ray imaging detector as a mission instrument. It has a couple of 1-dimensional imaging systems with a random coded aperture mask and silicon strip detectors. In this paper, we introduce the mission overview and the current status of Kanazawa-SAT3 and the flight model performance.
We are planning to launch a micro satellite, Kanazawa-SAT3 , at the end of FY2018 to localize X-ray transients associated with gravitational wave sources. Now we are testing a prototype model of wide-field Xray imaging detector named T-LEX (Transient Localization EXperiment). T-LEX is an orthogonally distributed two sets of 1-dimensional silicon strip detectors with coded aperture masks, and covers more than 1 steradian field of view in the energy range of 1 – 20 keV. Each dimension has 512 readout electrodes (totally 1,024 channels), and they are read out with application specific integrated circuits (ASICs) controlled by two onboard FPGAs. Moreover, each FPGA calculates the cross correlation between the X-ray intensity and mask patterns every 64 msec, makes a histogram of lightcurves and energy spectra, and also plays a role of telemetry/command interface to mission CPU. In this paper, we report an overview of digital electronics system. Especially, we focus on the high-speed imaging processor on FPGA and demonstrate its performance as an X-ray imaging system.
Hard X-ray imaging polarimeters are developed for the X-ray γ-ray polaeimtery satellite PolariS. The imaging polarimter is scattering type, in which anisotropy in the direction of Compton scattering is employed to measure the hard X-ray (10-80 keV) polarization, and is installed on the focal planes of hard X-ray telescopes. We have updated the design of the model so as to cover larger solid angles of scattering direction. We also examine the event selection algorithm to optimize the detection efficiency of recoiled electrons in plastic scintillators. We succeed in improving the efficiency by factor of about 3-4 from the previous algorithm and criteria for 18-30 keV incidence. For 23 keV X-ray incidence, the recoiled electron energy is about 1 keV. We measured the efficiency to detect recoiled electrons in this case, and found about half of the theoretical limit. The improvement in this efficiency directly leads to that in the detection efficiency. In other words, however, there is still a room for improvement. We examine various process in the detector, and estimate the major loss is primarily that of scintillation light in a plastic scintillator pillar with a very small cross section (2.68mm squared) and a long length (40mm). Nevertheless, the current model provides the MDP of 6% for 10mCrab sources, which are the targets of PolariS.
PolariS (Polarimetry Satellite) is a Japanese small satellite mission dedicated to polarimetry of X-ray and γ-ray sources. The primary aim of the mission is to perform hard X-ray (10-80 keV) polarimetry of sources brighter than 10 mCrab. For this purpose, PolariS employs three hard X-ray telescopes and scattering type imaging polarimeters. PolariS will measure the X-ray polarization for tens of sources including extragalactic ones mostly for the first time. The second purpose of the mission is γ-ray polarimetry of transient sources, such as γ-ray bursts (GRBs). Wide field polarimeters based on similar concept as that used in the IKAROS/GAP but with higher sensitivity will be used, and polarization measurement of 10 GRBs per year is expected.
WF-MAXI is a soft X-ray transient monitor proposed for the ISS/JEM. Unlike MAXI, it will always cover a large field of view (20 % of the entire sky) to detect short transients more efficiently. In addition to the various transient sources seen by MAXI, we hope to localize X-ray counterparts of gravitational wave events, expected to be directly detected by Advanced-LIGO, Virgo and KAGRA in late 2010's. The main instrument, the Soft X-ray Large Solid Angle Cameras (SLC) is sensitive in the 0.7-12 keV band with a localization accuracy of ~ 0:1°. The Hard X-ray Monitor (HXM) covers the same sky field in the 20 keV-1 MeV band.
KEYWORDS: Avalanche photodetectors, X-rays, Field effect transistors, Resistance, Crystals, Sensors, Hard x-rays, Scintillators, Analog electronics, Stanford Linear Collider
WF-MAXI is a mission to detect and localize X-ray transients with short-term variability as gravitational-wave (GW) candidates including gamma-ray bursts, supernovae etc. We are planning on starting observations by WF-MAXI to be ready for the initial operation of the next generation GW telescopes (e.g., KAGRA, Advanced LIGO etc.). WF-MAXI consists of two main instruments, Soft X-ray Large Solid Angle Camera (SLC) and Hard X-ray Monitor (HXM) which totally cover 0.7 keV to 1 MeV band. HXM is a multi-channel array of crystal scintillators coupled with APDs observing photons in the hard X-ray band with an effective area of above 100 cm2. We have developed an analog application specific integrated circuit (ASIC) dedicated for the readout of 32-channel APDs' signals using 0.35 μm CMOS technology based on Open IP project and an analog amplifier was designed to achieve a low-noise readout. The developed ASIC showed a low-noise performance of 2080 e- + 2.3 e-/pF at root mean square and with a reverse-type APD coupled to a Ce:GAGG crystal a good FWHM energy resolution of 6.9% for 662 keV -rays.
We are now investigating and studying a small satellite mission HiZ-GUNDAM for future observation of gamma-ray bursts (GRBs). The mission concept is to probe “the end of dark ages and the dawn of formation of astronomical objects”, i.e. the physical condition of early universe beyond the redshift z > 7. We will consider two kinds of mission payloads, (1) wide field X-ray imaging detectors for GRB discovery, and (2) a near infrared telescope with 30 cm in diameter to select the high-z GRB candidates effectively. In this paper, we explain some requirements to promote the GRB cosmology based on the past observations, and also introduce the mission concept of HiZ-GUNDAM and basic development of X-ray imaging detectors.
Wide-Field MAXI (WF-MAXI) planned to be installed in Japanese Experiment Module “Kibo” Exposed Facility of the international space station (ISS). WF-MAXI consists of two types of cameras, Soft X-ray Large Solid Angle Camera (SLC) and Hard X-ray Monitor (HXM). HXM is multi-channel arrays of CsI scintillators coupled with avalanche photodiodes (APDs) which covers the energy range of 20 - 200 keV. SLC is arrays of CCD, which is evolved version of MAXI/SSC. Instead of slit and collimator in SSC, SLC is equipped with coded mask allowing its field of view to 20% of all sky at any given time, and its location determination accuracy to few arcminutes. In older to achieve larger effective area, the number of CCD chip and the size of each chip will be larger than that of SSC. We are planning to use 59 x 31 mm2 CCD chip provided by Hamamatsu Photonics. Each camera will be quipped with 16 CCDs and total of 4 cameras will be installed in WF-MAXI. Since SLC utilize X-ray CCDs it must equip active cooling system for CCDs. Instead of using the peltier cooler, we use mechanical coolers that are also employed in Astro-H. In this way we can cool the CCDs down to -100C. ISS orbit around the earth in 90 minutes; therefore a point source moves 4 arcminutes per second. In order to achieve location determination accuracy, we need fast readout from CCD. The pulse heights are stacked into a single row along the vertical direction. Charge is transferred continuously, thus the spatial information along the vertical direction is lost and replaced with the precise arrival time information. Currently we are making experimental model of the camera body including the CCD and electronics for the CCDs. In this paper, we show the development status of SLC.
Monitor of All-sky X-ray Image (MAXI) is mounted on the International Space Station (ISS). Since 2009 it has been scanning the whole sky in every 92 minutes with ISS rotation. Due to high particle background at high latitude regions the carbon anodes of three GSC cameras were broken. We limit the GSC operation to low-latitude region around equator. GSC is suffering a double high background from Gamma-ray altimeter of Soyuz spacecraft. MAXI issued the 37-month catalog with 500 sources above ~0.6 mCrab in 4-10 keV. MAXI issued 133 to Astronomers Telegram and 44 to Gammaray burst Coordinated Network so far. One GSC camera had a small gas leak by a micrometeorite. Since 2013 June, the 1.4 atm Xe pressure went down to 0.6 atm in 2014 May 23. By gradually reducing the high voltage we keep using the proportional counter. SSC with X-ray CCD has detected diffuse soft X-rays in the all-sky, such as Cygnus super bubble and north polar spur, as well as it found a fast soft X-ray nova MAXI J0158-744. Although we operate CCD with charge-injection, the energy resolution is degrading. In the 4.5 years of operation MAXI discovered 6 of 12 new black holes. The long-term behaviors of these sources can be classified into two types of the outbursts, 3 Fast Rise Exponential Decay (FRED) and 3 Fast Rise and Flat Top (FRFT). The cause of types is still unknown.
PolariS (Polarimetry Satellite) is a Japanese small satellite mission dedicated to polarimetry of X-ray and γ-ray sources. The primary aim of the mission is to perform wide band X-ray (4-80 keV) polarimetry of sources brighter than 10 mCrab. For this purpose, Polaris employs three hard X-ray telescopes and two types of focal plane imaging polarimeters. PolariS observations will measure the X-ray polarization for tens of sources including extragalactic ones mostly for the first time. The second purpose of the mission is γ-ray polarimetry of transient sources, such as γ-ray bursts. Wide field polarimeters based on similar concept as that used in the IKAROS/GAP but with higher sensitivity, i.e., polarization measurement of 10 bursts per year, will be employed.
MAXI, the first astronomical payload on JEM-EF of ISS, began operation on August 3, 2009 for monitoring all-sky
X-ray images every ISS orbit (92 min). All instruments as well as two main X-ray slit cameras, the GSC and SSC,
worked well as expected for one month test operation. The MAXI has been operated since August, 2009 and monitored
more than 300 X-ray sources, which include Galactic black holes and black hole candidates (BH/BHC), transient X-ray
pulsars, X-ray novae, X-ray bursts, CVns, a considerable number of AGNs and so on. Automatic nova-alert and rapid
report system is starting up, while we have published more than 30 results publicly on GCN and ATel with manual
analysis. We are also releasing daily data more than 200 targets publicly.
Now MAXI has continued steady operation since the beginning of 2010 although capability of a part of X-ray
detectors is going down from initial ability. We have obtained some remarkable results concerning BH/BHC, X-ray
pulsars and AGNs. As one of the results XTE J1752-223, an X-ray nova accompanying a black hole candidate, has
revealed an evolution of accretion disc and high energy plasma from the data for seven-month observations.
In this paper we report the operation status of MAXI on the ISS as well as early several astronomical results.
MAXI (Monitor of All-sky X-ray Image) is a payload on board the International Space Station,
and will be launched on April 2009.
We report on the current development status on MAXI, in particular on the two types of X-ray camera (GSC and SSC),
and the simulation results of the MAXI observation.
SSC is a CCD camera.
The moderate energy resolution enables us to detect the various emission peak including 0.5 keV oxygen line.
The averaged energy resolution at the CCD temperature of -70 deg is 144.5 eV (FWHM) for 5.9 keV X-ray.
GSC includes proportional gas counters, which have large X-ray detection area (5350cm2).
The averaged position resolution of 1.1mm at 8 keV enable us to determined the celestial position of bright sources
within the accuracy of 0.1 degree.
The simulation study involving the results of performance test exhibits the high sensitivity of MAXI as designed.
The SXS (Soft X-ray Spectrometer) onboard the coming Japanese X-ray satellite NeXT (New Exploration Xray
Telescope) and the SXC (Spectrum-RG X-ray Calorimeter) in Spectrum-RG mission are microcalorimeter
array spectrometers which will achieve high spectral resolution of ~ 6 eV in 0.3-10.0 keV energy band. These
spectrometers are well-suited to address key problems in high-energy astrophysics. To achieve these high spectral
sensitivities, these detectors require to be operated under 50 mK by using very efficient cooling systems including
adiabatic demagnetization refrigerator (ADR). For both missions, we propose a two-stage series ADR as a cooling
system below 1 K, in which two units of ADR consists of magnetic cooling material, a superconducting magnet,
and a heat switch are operated step by step. Three designs of the ADR are proposed for SXS/SXC. In all three
designs, ADR can attain the required hold time of 23 hours at 50 mK and cooling power of 0.4μW with a low
magnetic fields (1.5/1.5 Tesla or 2.0/3.0 Tesla) in a small configuration (180 mmφ× 319 mm in length).
We also fabricated a new portable refrigerator for a technology investigation of two-stage ADR. Two units of
ADR have been installed at the bottom of liquid He tank. By using this dewar, important technologies such as an operation of two-stage cooling cycle, tight temperature control less than 1 μK (in rms) stability, a magnetic
shielding, saltpills, and gas-gap heat switches are evaluated.
Monitor of All-sky X-ray Image (MAXI) is an X-ray all-sky monitor,
which will be delivered to the International Space Station (ISS)
by a space shuttle crew in early 2009,
to scan almost the entire sky once every 96 minutes for
a mission life of two to five years. The detection sensitivity will be
5 mCrab (5σlevel) for a one-day MAXI operation, 2 mCrab for one week,
and 1 mCrab for one month, reaching a source confusion limit of 0.2 mCrab in two years.
In this paper, brief descriptions are presented for the MAXI mission and payload, and
three operation phases, 1) the launch-to-docking phase, 2) the initial in-orbit calibration phase,
and 3) the routine operation phase. We also describes the MAXI data product and its release plan for public users.
The Soft X-ray Spectrometer (SXS) onboard the NeXT (New exploration X-ray Telescope) is an X-ray spectrometer
utilizing an X-ray microcalorimeter array. Combined with the soft X-ray telescope of 6 m focal length,
the instrument will have a ~ 290cm2 effective at 6.7 keV. With the large effective area and the energy resolution
as good as 6 eV (FWHM), the instrument is very suited for the high-resolution spectroscopy of iron K emission
line. One of the major scientific objectives of SXS is to determine turbulent and/or macroscopic motions of the
hot gas in clusters of galaxies of up to z ~ 1. The instruments will use 6 × 6 or 8 × 8 format microcalorimeter
array which is similar to that of Suzaku XRS. The detector will be cooled to a cryogenic temperature of 50 mK
by multi-stage cooling system consisting of adiabatic demagnetization refrigerator, super fluid He, a 3He Joule
Thomson cooler, and double-stage stirling cycle cooler.
MAXI is the first payload to be attached on JEM-EF (Kibo exposed facility) of ISS. It provides an all sky X-ray image
every ISS orbit. If MAXI scans the sky during one week, it could make a milli-Crab X-ray all sky map excluding bright
region around the sun. Thus, MAXI does not only inform X-ray novae and transients rapidly to world astronomers if
once they occur, but also observes long-term variability of Galactic and extra-Galactic X-ray sources. MAXI also
provides an X-ray source catalogue at that time with diffuse cosmic X-ray background.
MAXI consists of two kinds of detectors, position sensitive gas-proportional counters for 2-30 keV X-rays and CCD
cameras for 0.5-10 keV X-rays. All instruments of MAXI are now in final phase of pre-launching tests of their flight
modules. We are also carrying out performance tests for X-ray detectors and collimators. Data processing and analysis
software including alert system on ground are being developed by mission team.
In this paper we report an overview of final instruments of MAXI and capability of MAXI.
We have been developing a hard X-ray polarimeter to open a new window for hard X-ray astronomy. The project is
called as PHENEX (Polarimetry for High ENErgy X rays). The PHENEX detector is Compton scattering type
polarimeter and it is constructed by several unit counters. The unit counter can achieve the modulation factor and the
detection efficiency of 53% and 20% at 80 keV, respectively. Installing four unit counters, we have carried out balloon-borne
experiment in Jun.13 2006 to preliminarily observe the polarization of the Crab Nebula in hard X-ray band. The
PHENEX polarimeter successfully operated on the level flight and observed the Crab Nebula for about one hour. From
the analysis of the obtained data, it was recognized that the PHENEX polarimeter does not make much spurious
modulation and that the ratio of the signal from the Crab Nebula to the background from the blank sky is 1:3. Though we
can not precisely determine the degree and the direction of the polarization for the Crab Nebula because of the trouble of
the attitude control system, the obtained results were not inconsistent with those in the X-ray band. We will carry out
balloon-borne experiment again, fixing the trouble of the attitude control system.
Monitor of All-sky X-ray Image (MAXI) is an X-ray all-sky scanner, which will be attached on Exposed Facility of Japanese Experiment Module dubbed "Kibo" of International Space Station (ISS). MAXI will be launched by the Space Shuttle or the Japanese H-IIA Transfer Vehicle (HTV) in 2008. MAXI carries two types of X-ray cameras: Solid-state Slit Camera (SSC) for 0.5-10 keV and Gas Slit Camera (GSC) for 2-30 keV bands. Both have long narrow fields of view (FOV) made by a slit and orthogonally arranged collimator plates (slats). The FOV will sweep almost the whole sky once every 96 minutes by utilizing the orbital motion of ISS. Then the light curve of an X-ray point source become triangular shape in one transit. In this paper, we present the actual triangular response of the GSC collimator, obtained by our calibration. In fact they are deformed by gaps between the slats, leaning angle of the slats, and the effective width of the slats. We are measuring these sizes by shooting X-ray beams into the detector behind the collimator. We summarize the calibration and present the first compilation of the data to make the GSC collimator response, which will be useful for public users.
The solar powered sail spacecraft using a huge sail is a next Japanese engineering verification satellite planned to launch in 2012. It has a hybrid propulsion system with ion engines and a huge solar sail panel of 50 m in diameter. Based on the present mission plan, it will take about 6 years to cruise to Jupiter via Earth swing-bys and 5 more years to reach the Jovian L4 Trojan asteroids. During its cruising phase, we plan to mount a gamma-ray burst (GRB) detector with polarization detection capability which also works as one of the interplanetary network (IPN) to determine the GRB positions. The emission mechanism of GRB is thought to be the synchrotron radiation from the relativistic outflows. If the emission mechanism of GRBs is really synchrotron radiation, the emitted gamma-rays should be strongly polarized. The detection principle is the anisotropy of the Compton scattering. The Compton-scattered gamma-ray photons show the strongly biased distribution toward the vertical direction against the oscillating electric field vector. The design concept of our detector is simple but carefully
avoid a fake modulation. The plastic scintillator in one Compton-length as the scattering body is placed at the center, and 12 CsI scintillators are allocated around it. To avoid a fake modulation through the satellite body scattering, these detectors work in coincidence mode. The coincidence also helps to reduce the particle background. We will use the VA-TA ASIC and FPGA as the analog readout and the digital event processing, respectively, to make the detector weight of almost 2.0 kg. In this paper, we introduce the solar sail mission and show the overview of gamma-ray polarimeter.
Monitor of All-sky X-ray Image(MAXI) is an X-ray all sky monitor, which will be attached to the Japanese Experiment Module (JEM) on the International Space Station (ISS) around the year 2008. MAXI carries two types of scientific instruments. The Gas Slit Camera(GSC) consists of twelve Xe filled one-dimensional position sensitive gas proportional counters sensitive to X-ray in 2-30 keV band. The Solid-state Slit Camera (SSC) is a set of X-ray CCD arrays sensitive to 0.5-10 keV photons. Both detectors are utilized in combination with a slit
and orthogonally arranged collimator plates to produce one-dimensional X-ray images along sky great circles. The instruments are now under fabrication and preflight testing. A detector response matrix (DRM) of GSC is also under development phase based on flight model calibration tests for counters and collimators. MAXI's
overall performance depends on not only hardware characteristics but on the fact that the field-of-view changes in time even during observations. To study this complicated situation, we are developing a software, DRM builder, and also a simulation software to evaluate "realistic" performance of GSC in ISS orbits.
Monitor of All-sky X-ray Image (MAXI) is an X-ray all-sky monitor,
which will be delivered to the International Space Station (ISS) in 2008, to scan almost the whole sky once every 96 minutes for a mission life of two years. The detection sensitivity will be 7~mCrab (5σ level) in one scan, and 1~mCrab for one-week accumulation. At previous SPIE meetings, we presented the development status
of the MAXI payload, in particular its X-ray detectors. In this paper, we present the whole picture of the MAXI system, including the downlink path and the MAXI ground system. We also examine the MAXI system components other than X-ray detectors from the point of view of the overall performance of the mission. The engineering model test of the MAXI X-ray slit collimator shows that we can achieve the position determination accuracy of <0.1 degrees, required for the ease of follow-up observations. Assessing the downlink paths, we currently estimates that the MAXI ground system receive more than 50% of the observational data in "real time" (with time delay of a few to ten seconds), and the rest of data with delay of 20 minutes to a few hours from detection, depending on the timing of downlink. The data will be processed in easily-utilised formats, and made open to public users through the Internet.
We make a plan of a hard X-ray polarimetry experiment with a small satellite. Bright point-like sources in 20-80keV are prime targets, for which we will not use focusing optics. Comparing various types of polarimeters, we adopt a scattering type in which anisotropy in scattering directions of photons is employed. After optimization of the design is considered with simplified models of scattering polarimeters, we propose to use segmented scatter targets made of plastic scintillators, with which scattering location is identified by detecting recoiled electrons. Simulations show that recoiled electrons are detectable when incident X-ray energies are above 40keV, for which higher polarimetry sensitivity is obtained. We confirmed the performance of such a polarimeter in experiments at a Synchrotron facility and performed a balloon flight in which a proto type unit of the polarimeter was onboard. We finally discuss feasibility of a small satellite experiment in which many of the polarimeter units will be employed. Twenty five units of the polarimeter enable us to detect hard X-ray polarization of 5-10% for a hundred mCrab sources. Improvement in the sensitivity to detect recoiled electrons will significantly improve the polarimetry sensitivity. We also consider a low energy extension of our system down to below 10keV in order to cover wide energy range.
The current status is reported of the development of Monitor of All-sky X-ray Image and the measurement of its observational response. MAXI is a scanning X-ray camera to be attached to the Japanese Experiment Module of the International Space Station in 2008. MAXI is mainly composed of two kinds of instruments, GSC which is sensitive to the 2 - 30 keV photons, and SSC to the 0.5 - 10 keV ones. As an X-ray all-sky monitor, MAXI has an unprecedented sensitivity of 7 mCrab in one orbit scan, and 1 mCrab in one week. Using the engineering mode of the proportional counter and of the collimator for GSC, the observational response of GSC is extensively measured. The acceptable performances are obtained as a whole for both the collimator and the counter. The engineering models of the other part of MAXI are also constructed and the measurement of their performance is ongoing.
MAXI is an X-ray all-sky monitor which will be mounted on the Japanese Experimental Module (JEM) of the International Space Station (ISS) in 2008. The Gas Slit Camera (GSC) consists of 12 one-dimensional position sensitive proportional counters and the sensitivity will be as high as 1 mCrab for a one-week accumulation in the 2-30 keV band. In order to calibrate the detectors and electronic systems thoroughly before the launch, a fast and
versatile Ground Support Electronic (GSE) system is necessary. We have developed a new GSE based on VME I/O boards for a Linux workstation. These boards carry reconfigurable FPGAs of 100,000 gates, together with 16 Mbytes of SDRAM. As a demonstration application of using this GSE, we have tested the positional response of a GSC engineering counter. We present a schematic view of the GSE highlighting the functional design, together with a future vision of the ground testing of the GSC flight counters and digital associated processor.
We made one-dimensional detector arrays applying the newly developed Schottky CdTe technique. Two prototypes are manufactured; one consists of eight pixels of 2 x 2 x 0.5 mm3 each (2 mm module) and the other eight pixels of 25 x 2 x 0.5 mm3 each (25 mm module). The single element read-out test of the 2 mm module showed an energy resolution of ~1.7 keV at 59.5 keV, at 0°C for the bias voltage of 400 V. The 25 mm modules showed an energy resolution of ~4.5 keV at 59.5 keV at 0°C for the bias voltage of 300 V. Signals from the four sets of the CdTe modules (32 pixels in total) are read out by the VA/TA chips made by IDE company. The energy resolution of the 2 mm module is ~3.0 keV on average at 59.5 keV at room temperature for the bias voltage of 350 V. The 25 mm modules have an energy resolution of ~6.1 keV on average at 122.1 keV at room temperature for the bias voltage of 300 V. In view of these results, the manufactured arrays are promising as spectroscopic detectors for hard X-rays and γ-rays. A few modifications are needed in the VA/TA chips to be applied for the CdTe X-ray detector. Applications of CdTe detector arrays to a slit or coded-mask camera, and an imaging polarimeter are stated.
We are developing Monitor of All Sky X-ray Image (MAXI) which will be mounted on the Japanese Experiment Module of the International Space Station. MAXI is an all-sky X-ray monitor which scans the sky in every 90 minutes. The sensitivity will be as high as 7 mCrab (5 (sigma) level) in one scan and 1 mCrab in one-week accumulation. The GSC (Gas Slit Camera) instrument consists of twelve one-dimensional position sensitive proportional counters using the Xe++CO2 gas and the carbon fiber anodes of 10micrometers diameter. The window size is 272 x 190 mm. The position is obtained by the charge division method. It is used to identify the source in the long rectangular field-of-view (1.5 x 80 degrees). Three cameras will be set to cover the 1.5 x 160 degrees arc. The position resolution is essentially important, which becomes better in the higher gas gain. We have tested gas mixtures of Xe+CO2with CO2 equals 0.2\%, 0.5\%, 1\%, 3%. The CO2 equals 0.5\% showed the most uniform gas gain, but has a little after pulses. We chose the Xe (99%) + CO2 (1%) combination for the flight counters. It can achieve the uniform gas gain in the cell and negligible after-pulse in high operating voltage. The engineering model of the counter (EM1) was build. We have tested the position resolution and the energy resolution across the counter. The position resolution and the energy resolution depend on the X-ray energy. On the basis of these results, together with the collimator response, we performed a realistic simulation.
Monitor of the All-sky X-ray Image (MAXI) is the first payload for the Japanese Experiment Module (JEM) on the International Space Station (ISS). It is designed for monitoring all-sky in the X-ray band. Its angular resolution and scanning period are about 1 arc-degree and 100 minutes, respectively. MAXI employs two types of X-ray camera. One is Gas Slit Camera (GSC), the detectors of which are one dimensional position sensitive proportional counters. Another is Solid-state Slit Camera (SSC). We mainly report on SSC. We employ a pair of SSCs, each of which consists of 16 CCD chips. Each CCD chips has 1024 X 1024 pixels, and the pixel size is 24 X 24 micrometer. The CCDs are to be operated at -60 degrees Celsius using Peltier coolers. Optical light is blocked by aluminum coat on the CCDs instead of fragile aluminized film. SSC achieves an energy resolution of 152 eV in FWHM at 5.9 keV. The energy range is 0.5 - 10 keV.
The position dependency of gas amplification in the proportional counter (PC) is investigated. We have been developing one-dimensional position sensitive PCs for MAXI/GSC and HETE/WXM and found that anomalous gas amplification occurs in a high bias voltage, even while the PC is still operated in the proportional region. This effect depends on the position where the X-ray is absorbed. Therefore it appears as a hard tail, a soft tail, or a broad peak in the traditional PC, depending on the shape of the gain curve across the cell. It degrades the apparent energy resolution. Especially, a position sensitive proportional counter (PSPC) is operated with rather high bias voltage to give higher positional resolution. We encounter the difficulty to achieve good position and energy resolutions at the same time. In this work, we have examined the anomalous gas amplification for various gas mixtures of Xe + CO2, Ar + CO2 and Ar + CH4, for gas gain up to approximately 20000, and for energies from 6 to 17 keV to understand the phenomena.
Monitor of All-sky X-ray Image (MAXI) is the first astrophysical payload which will be mounted on the Japanese Experiment Module Exposed Facility of International Space Station in 2004. It is designed for monitoring all-sky in the x-ray band by scanning with slat collimators and slit apertures. Its angular resolution and scanning period are approximately 1 arc degree and 90 minutes, respectively. MAXI employs two types of X-ray camera. One is Gas slit Camera (GSC), the detectors of which are 1D position sensitive proportional counters. Its position resolution is approximately 1.0 mm along carbon anode wires. GSC covers the 2.0 - 30 keV energy band. We have found an interesting feature in the energy response: monochromatic X-rays are detected with a peculiar hard tail in the spectra. The physical mechanism causing the hard tail is still unclear. The other camera is Solid-state Slit Camera (SSC). We employ a pair of SSCs, each of which consists of sixteen CCD chips. Each CCD has 1024 X 1024 pixels, and each pixel is 24 X 24 micrometers. The CCDs are to be operated at -60 degree using Peltier coolers. SSC covers an energy range of 0.5 - 10.0 keV. The test counters and test chips are evaluated in NASDA, Riken, and Osaka-University. The continuous Ethernet down link will enable us to alert the astronomers in all over the world to the appearance of X-ray transients, novae, bursts, flares etc. In this paper we will report on the current status of the MAXI mission.
Monitor of All-Sky X-ray Image (MAXI) is the first astrophysical payload for the Japanese Experiment Module (JEM) on the International Space Station. It is designed for monitoring all sky in the x-ray band. Two kinds of x-ray detectors, the gas slit camera and the solid-state slit camera, are employed. The former is the gas proportional counter with 1D position sensitivity and the latter is the x-ray CCD. We have designed and constructed the engineering models of both detectors. We have also developed an x-ray irradiation facility in the Tsukuba Space Center of National Space Development Agency of Japan. We report the status of the mission and introduce the x-ray irradiation facility.
The Astro-E High Resolution X-ray Spectrometer (XRS) was developed jointly by the NASA/Goddard Space Flight Center and the Institute of Space and Astronomical Science in Japan. The instrument is based on a new approach to spectroscopy, the x-ray microcalorimeter. This device senses the energies of individual x-ray photons as heat with extreme precision. A 32 channel array of microcalorimeters is being employed, each with an energy resolution of about 12 eV at 6 keV. This will provide spectral resolving power 10 times higher than any other non-dispersive x-ray spectrometer. The instrument incorporates a three stage cooling system capable of operating the array at 60 mK for about two years in orbit. The array sits at the focus of a grazing incidence conical mirror. The quantum efficiency of the microcalorimeters and the reflectivity of the x-ray mirror system combine to give high throughput over the 0.3- 12 keV energy band. This new capability will enable the study of a wide range of high-energy astrophysical sources with unprecedented spectral sensitivity. This paper presents the basic design requirements and implementation of the XRS, and also describes the instrument parameters and performance.
XRS is the microcalorimeter x-ray detector aboard the US- Japanese ASTRO-E observatory, which is scheduled to be launched in early 2000. XRS is a high resolution spectrometer - with less than 9 eV resolution at 3 keV and better than 14 eV resolution over its bandpass ranging from about 0.3 keV to 15 keV. Here we present the results of our first calibration of the XRS instrument. We describe the methods used to extract detailed information about the detection efficiency and spectral redistribution of the instrument. We also present comparisons of simulations and real data to test our detector models.
The XRS instrument has an array of 32 micro-calorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of 9 eV at 3 keV and 11 eV at 6 keV. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, operating temperature, thermistor size, absorber choice, and means of attaching the absorber to the thermistor bearing element. We will present representative performance data, though a more detailed presentation of the results of the instrument calibration is presented elsewhere in these proceedings. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance in conjunction with the array.
We describe the transmission calibration of the Astro-E XRS blocking filters. The XRS instrument has five aluminized polymide blocking filters. These filters are located at thermal stages ranging from 200 K to 60 mK. They are each about 1000 angstrom thick. XRS will have high energy resolution which will enable it to see some of the extended fine structure around the oxygen and aluminum edges of these filters. Thus, we are conducting a high spectral resolution calibration of the filters near these energies to resolve out extended fine structure and absorption lines.
NASDA (National Space Development Agency of Japan) has selected MAXI as an early payload of the JEM (Japanese experiment module) Exposed Facility (EF) on the space station. MAXI is designed for all sky x-ray monitoring, and is the first astrophysical payload of four sets of equipment selected for JEM. MAXI will monitor the activities of about 1000 - 2000 x-ray sources. In the present design, MAXI is a slit scanning camera system which consists of two kinds of x-ray detectors; one with one-dimensional position sensitive proportional counters and the other with an x-ray CCD array employed for one-dimensional imaging. MAXI will be able to detect one milli-Crab x-ray sources in a few-day observations. The whole sky will be covered completely in every orbit of the space station. MAXI will be capable of monitoring variability of galactic and extragalactic sources on timescales of days with a sensitivity improvement of a factor of 5 or more over previous missions. NASDA and RIKEN have jointly begun the design and construction of MAXI. The payload will be ready for launch in 2003. In this paper we present the scientific objectives of MAXI, a basic design and some simulation results, after introducing the present status of JEM.
The fourth Japanese x-ray astronomy satellite, ASCA, carries two imaging gas scintillation proportional counters (GIS) on its focal plane. Extensive ground calibration has established its position resolution to be 0.5 mm and FWHM energy resolution to be 8.0% both at 6 keV. When combined with the x-ray telescope, a sensitivity range becomes 0.7 - 10 keV. These properties have been confirmed through in-orbit calibrations. The in-orbit background of the GIS has been confirmed to be as low as (5 - 7) X 10-4 c s-1cm-2keV-1 over the 1 - 10 keV range. The long-term detector gain is stable within a few % for two years. Gain dependence on the position and temperature has been calibrated down to 1%. The overall energy response is calibrated very accurately. Thus the GIS is working as an all-round cosmic x-ray detector.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.