KEYWORDS: Software development, Telescopes, Data modeling, Computer architecture, Control systems, Atmospheric Cherenkov telescopes, Data acquisition, Data archive systems, Design, Cameras
The Astrophysics with Italian Replicating Technology Mirrors (ASTRI) Mini-Array is an international collaboration led by the Italian National Institute for Astrophysics (INAF) and devoted to imaging atmospheric Cherenkov light for very-high γ-ray astrophysics, detection of cosmic-rays, and stellar Hambury-Brown intensity interferometry. The project is deploying an array of nine dual-mirror aplanatic imaging atmospheric Cherenkov telescopes of 4-m class at the Teide Observatory on Tenerife in the Canary Islands. Based on SiPM sensors, the focal plane camera covers an unprecedented field of view of 10.5 deg in diameter. The array is most sensitive to γ-ray radiation above 1 up to 200 TeV, with an angular resolution of 3 arcmin, better than the current particle arrays, such as LHAASO and HAWC. We describe the overall software architecture of the ASTRI Mini-Array and the software engineering approach for its development. The software covers the entire life cycle of the Mini-Array, from scheduling to remote operations, data acquisition, and processing until data dissemination. The on-site control software allows remote array operations from different locations, including automated reactions to critical conditions. All data are collected every night, and the array trigger is managed post facto. The high-speed networking connection between the observatory site and the Data Center in Rome allows for ready data availability for stereoscopic event reconstruction, data processing, and almost real-time science products generation.
KEYWORDS: Atmospheric Cherenkov telescopes, Telescopes, Data archive systems, Calibration, Data centers, Data processing, Monte Carlo methods, Data storage, Device simulation, Data acquisition
The ASTRI Mini-Array is an international project led by the Italian National Institute for Astrophysics (INAF) to build and operate an array of nine 4-m class Imaging Atmospheric Cherenkov Telescopes (IACTs) at the Observatorio del Teide (Tenerife, Spain). The system is designed to perform deep observations of the galactic and extragalactic gamma-ray sky in the TeV and multi-TeV energy band, with important synergies with other ground-based gamma-ray facilities in the Northern Hemisphere and space-borne telescopes. As part of the overall software system, the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Team is developing dedicated systems for Data Processing, Simulation, and Archive to achieve effective handling, dissemination, and scientific exploitation of the ASTRI Mini-Array data. Thanks to the high-speed network connection available between Canary Islands and Italy, data acquired on-site will be delivered to the ASTRI Data Center in Rome immediately after acquisition. The raw data will be then reduced and analyzed by the Data Processing System up to the generation of the final scientific products. Detailed Monte Carlo simulated data will be produced by the Simulation System and exploited in several data processing steps in order to achieve precise reconstruction of the physical characteristics of the detected gamma rays and to reject the overwhelming background due to charged cosmic rays. The data access at different user levels and for different use cases, each one with a customized data organization, will be provided by the Archive System. In this contribution we present these three ASTRI Mini-Array software systems, focusing on their main functionalities, components, and interfaces.
KEYWORDS: Data modeling, Atmospheric Cherenkov telescopes, Control systems, Software development, Telescopes, Data processing, Data archive systems, Data acquisition, Calibration, Computer architecture
The ASTRI Mini-Array is an international collaboration led by the Italian National Institute for Astrophysics (INAF) and devoted to the imaging of atmospheric Cherenkov light for very-high gamma-ray astronomy. The project is deploying an array of 9 telescopes sensitive above 1 TeV. In this contribution, we present the architecture of the software that covers the entire life cycle of the observatory, from scheduling to remote operations and data dissemination. The high-speed networking connection available between the observatory site, at the Canary Islands, and the Data Center in Rome allows for ready data availability for stereo triggering and data processing.
P. Soffitta, R. Bellazzini, E. Bozzo, V. Burwitz, A. Castro-Tirado, E. Costa, T. Courvoisier, H. Feng, S. Gburek, R. Goosmann, V. Karas, G. Matt, F. Muleri, K. Nandra, M. Pearce, J. Poutanen, V. Reglero, D. Sabau Maria, A. Santangelo, G. Tagliaferri, C. Tenzer, J. Vink, M. Weisskopf, S. Zane, I. Agudo, A. Antonelli, P. Attina, L. Baldini, A. Bykov, R. Carpentiero, E. Cavazzuti, E. Churazov, E. Del Monte, D. De Martino, I. Donnarumma, V. Doroshenko, Y. Evangelista, I. Ferreira, E. Gallo, N. Grosso, P. Kaaret, E. Kuulkers, J. Laranaga, L. Latronico, D. Lumb, J. Macian, J. Malzac, F. Marin, E. Massaro, M. Minuti, C. Mundell, J. U. Ness, T. Oosterbroek, S. Paltani, G. Pareschi, R. Perna, P.-O. Petrucci, H. B. Pinazo, M. Pinchera, J. P. Rodriguez, M. Roncadelli, A. Santovincenzo, S. Sazonov, C. Sgro, D. Spiga, J. Svoboda, C. Theobald, T. Theodorou, R. Turolla, E. Wilhelmi de Ona, B. Winter, A. M. Akbar, H. Allan, R. Aloisio, D. Altamirano, L. Amati, E. Amato, E. Angelakis, J. Arezu, J.-L. Atteia, M. Axelsson, M. Bachetti, L. Ballo, S. Balman, R. Bandiera, X. Barcons, S. Basso, A. Baykal, W. Becker, E. Behar, B. Beheshtipour, R. Belmont, E. Berger, F. Bernardini, S. Bianchi, G. Bisnovatyi-Kogan, P. Blasi, P. Blay, A. Bodaghee, M. Boer, M. Boettcher, S. Bogdanov, I. Bombaci, R. Bonino, J. Braga, W. Brandt, A. Brez, N. Bucciantini, L. Burderi, I. Caiazzo, R. Campana, S. Campana, F. Capitanio, M. Cappi, M. Cardillo, P. Casella, O. Catmabacak, B. Cenko, P. Cerda-Duran, C. Cerruti, S. Chaty, M. Chauvin, Y. Chen, J. Chenevez, M. Chernyakova, C. C. Cheung, D. Christodoulou, P. Connell, R. Corbet, F. Coti Zelati, S. Covino, W. Cui, G. Cusumano, A. D’Ai, F. D’Ammando, M. Dadina, Z. Dai, A. De Rosa, L. de Ruvo, N. Degenaar, M. Del Santo, L. Del Zanna, G. Dewangan, S. Di Cosimo, N. Di Lalla, G. Di Persio, T. Di Salvo, T. Dias, C. Done, M. Dovciak, G. Doyle, L. Ducci, R. Elsner, T. Enoto, J. Escada, P. Esposito, C. Eyles, S. Fabiani, M. Falanga, S. Falocco, Y. Fan, R. Fender, M. Feroci, C. Ferrigno, W. Forman, L. Foschini, C. Fragile, F. Fuerst, Y. Fujita, J. L. Gasent-Blesa, J. Gelfand, B. Gendre, G. Ghirlanda, G. Ghisellini, M. Giroletti, D. Goetz, E. Gogus, J.-L. Gomez, D. Gonzalez, R. Gonzalez-Riestra, E. Gotthelf, L. Gou, P. Grandi, V. Grinberg, F. Grise, C. Guidorzi, N. Gurlebeck, T. Guver, D. Haggard, M. Hardcastle, D. Hartmann, C. Haswell, A. Heger, M. Hernanz, J. Heyl, L. Ho, J. Hoormann, J. Horak, J. Huovelin, D. Huppenkothen, R. Iaria, C. Inam Sitki, A. Ingram, G. Israel, L. Izzo, M. Burgess, M. Jackson, L. Ji, J. Jiang, T. Johannsen, C. Jones, S. Jorstad, J. J. E. Kajava, M. Kalamkar, E. Kalemci, T. Kallman, A. Kamble, F. Kislat, M. Kiss, D. Klochkov, E. Koerding, M. Kolehmainen, K. Koljonen, S. Komossa, A. Kong, S. Korpela, M. Kowalinski, H. Krawczynski, I. Kreykenbohm, M. Kuss, D. Lai, M. Lan, J. Larsson, S. Laycock, D. Lazzati, D. Leahy, H. Li, J. Li, L.-X. Li, T. Li, Z. Li, M. Linares, M. Lister, H. Liu, G. Lodato, A. Lohfink, F. Longo, G. Luna, A. Lutovinov, S. Mahmoodifar, J. Maia, V. Mainieri, C. Maitra, D. Maitra, A. Majczyna, S. Maldera, D. Malyshev, A. Manfreda, A. Manousakis, R. Manuel, R. Margutti, A. Marinucci, S. Markoff, A. Marscher, H. Marshall, F. Massaro, M. McLaughlin, G. Medina-Tanco, M. Mehdipour, M. Middleton, R. Mignani, P. Mimica, T. Mineo, B. Mingo, G. Miniutti, S. M. Mirac, G. Morlino, A. Motlagh, S. Motta, A. Mushtukov, S. Nagataki, F. Nardini, J. Nattila, G. Navarro, B. Negri, Matteo Negro, S. Nenonen, V. Neustroev, F. Nicastro, A. Norton, A. Nucita, P. O’Brien, S. O’Dell, H. Odaka, B. Olmi, N. Omodei, M. Orienti, M. Orlandini, J. Osborne, L. Pacciani, V. Paliya, I. Papadakis, A. Papitto, Z. Paragi, P. Pascal, B. Paul, L. Pavan, A. Pellizzoni, E. Perinati, M. Pesce-Rollins, E. Piconcelli, A. Pili, M. Pilia, M. Pohl, G. Ponti, D. Porquet, A. Possenti, K. Postnov, I. Prandoni, N. Produit, G. Puehlhofer, B. Ramsey, M. Razzano, N. Rea, P. Reig, K. Reinsch, T. Reiprich, M. Reynolds, G. Risaliti, T. Roberts, J. Rodriguez, M. Rossi, S. Rosswog, A. Rozanska, A. Rubini, B. Rudak, D. Russell, F. Ryde, S. Sabatini, G. Sala, M. Salvati, M. Sasaki, T. Savolainen, R. Saxton, S. Scaringi, K. Schawinski, N. Schulz, A. Schwope, P. Severgnini, M. Sharon, A Shaw, A. Shearer, X. Shesheng, I. -C. Shih, K. Silva, R. Silva, E. Silver, A. Smale, F. Spada, G. Spandre, A. Stamerra, B. Stappers, S. Starrfield, L. Stawarz, N. Stergioulas, A. Stevens, H. Stiele, V. Suleimanov, R. Sunyaev, A. Slowikowska, F. Tamborra, F. Tavecchio, R. Taverna, A. Tiengo, L. Tolos, F. Tombesi, J. Tomsick, H. Tong, G. Torok, D. Torres, A. Tortosa, A. Tramacere, V. Trimble, G. Trinchieri, S. Tsygankov, M. Tuerler, S. Turriziani, F. Ursini, P. Uttley, P. Varniere, F. Vincent, E. Vurgun, C. Wang, Z. Wang, A. Watts, J. Wheeler, K. Wiersema, R. Wijnands, J. Wilms, A. Wolter, K. Wood, K. Wu, X. Wu, W. Xiangyu, F. Xie, R. Xu, S.-P. Yan, J. Yang, W. Yu, F. Yuan, A. Zajczyk, D. Zanetti, R. Zanin, C. Zanni, L. Zappacosta, A. Zdziarski, A. Zech, H. Zhang, S. Zhang, W. Zhang, A. Zoghbi
XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of
writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the
polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently
exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially-
resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics.
Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective
area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega
launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest
Observer competitive program and it is organized as a consortium across Europe with main contributions from
Italy, Germany, Spain, United Kingdom, Poland, Sweden.
High-energy muons constitute a very useful tool to calibrate the total optical throughput of any telescope of the Cherenkov Telescope Array (CTA). Differences in precision and efficiency can however be present due to the variety of telescope types and sizes. In this contribution we present some preliminary results on simulated muon ring images collected by the ASTRI small sized dual-mirror (SST-2M) telescope in the basic configuration installed in Italy at the Serra La Nave observing station. ASTRI SST-2M is able, using 6% of the detected muon events, to calibrate with muons the optical throughput down to a degradation of the optical efficiency of 30%. Moreover, its precision in reconstructing the muon arrival direction is about one camera pixel, and its error on the reconstructed ring radius is ~ 6.3%. The adopted procedures will be tested and validated with real data acquired by the prototype after the commissioning phase. The nine telescopes that will form the ASTRI mini-array, proposed to be installed at the final CTA southern site during the pre-production phase, will improve these results thanks to the higher detection efficiency and the lower optical cross-talk and after-pulse of their updated silicon photomultipliers.
M. Feroci, E. Bozzo, S. Brandt, M. Hernanz, M. van der Klis, L.-P. Liu, P. Orleanski, M. Pohl, A. Santangelo, S. Schanne, L. Stella, T. Takahashi, H. Tamura, A. Watts, J. Wilms, S. Zane, S.-N. Zhang, S. Bhattacharyya, I. Agudo, M. Ahangarianabhari, C. Albertus, M. Alford, A. Alpar, D. Altamirano, L. Alvarez, L. Amati, C. Amoros, N. Andersson, A. Antonelli, A. Argan, R. Artigue, B. Artigues, J.-L. Atteia, P. Azzarello, P. Bakala, D. Ballantyne, G. Baldazzi, M. Baldo, S. Balman, M. Barbera, C. van Baren, D. Barret, A. Baykal, M. Begelman, E. Behar, O. Behar, T. Belloni, F. Bernardini, G. Bertuccio, S. Bianchi, A. Bianchini, P. Binko, P. Blay, F. Bocchino, M. Bode, P. Bodin, I. Bombaci, J.-M. Bonnet Bidaud, S. Boutloukos, F. Bouyjou, L. Bradley, J. Braga, M. Briggs, E. Brown, M. Buballa, N. Bucciantini, L. Burderi, M. Burgay, M. Bursa, C. Budtz-Jørgensen, E. Cackett, F. Cadoux, P. Cais, G. Caliandro, R. Campana, S. Campana, X. Cao, F. Capitanio, J. Casares, P. Casella, A. Castro-Tirado, E. Cavazzuti, Y. Cavechi, S. Celestin, P. Cerda-Duran, D. Chakrabarty, N. Chamel, F. Château, C. Chen, Y. Chen, J. Chenevez, M. Chernyakova, J. Coker, R. Cole, A. Collura, M. Coriat, R. Cornelisse, L. Costamante, A. Cros, W. Cui, A. Cumming, G. Cusumano, B. Czerny, A. D'Aì, F. D'Ammando, V. D'Elia, Z. Dai, E. Del Monte, A. De Luca, D. De Martino, J. P. C. Dercksen, M. De Pasquale, A. De Rosa, M. Del Santo, S. Di Cosimo, N. Degenaar, J. W. den Herder, S. Diebold, T. Di Salvo, Y. Dong, I. Donnarumma, V. Doroshenko, G. Doyle, S. Drake, M. Durant, D. Emmanoulopoulos, T. Enoto, M. H. Erkut, P. Esposito, Y. Evangelista, A. Fabian, M. Falanga, Y. Favre, C. Feldman, R. Fender, H. Feng, V. Ferrari, C. Ferrigno, M. Finger, G. Fraser, M. Frericks, M. Fullekrug, F. Fuschino, M. Gabler, D. K. Galloway, J. L. Gálvez Sanchez, P. Gandhi, Z. Gao, E. Garcia-Berro, B. Gendre, O. Gevin, S. Gezari, A. B. Giles, M. Gilfanov, P. Giommi, G. Giovannini, M. Giroletti, E. Gogus, A. Goldwurm, K. Goluchová, D. Götz, L. Gou, C. Gouiffes, P. Grandi, M. Grassi, J. Greiner, V. Grinberg, P. Groot, M. Gschwender, L. Gualtieri, M. Guedel, C. Guidorzi, L. Guy, D. Haas, P. Haensel, M. Hailey, K. Hamuguchi, F. Hansen, D. Hartmann, C. A. Haswell, K. Hebeler, A. Heger, M. Hempel, W. Hermsen, J. Homan, A. Hornstrup, R. Hudec, J. Huovelin, D. Huppenkothen, S. Inam, A. Ingram, J. In't Zand, G. Israel, K. Iwasawa, L. Izzo, H. Jacobs, F. Jetter, T. Johannsen, P. Jenke, P. Jonker, J. Josè, P. Kaaret, K. Kalamkar, E. Kalemci, G. Kanbach, V. Karas, D. Karelin, D. Kataria, L. Keek, T. Kennedy, D. Klochkov, W. Kluzniak, E. Koerding, K. Kokkotas, S. Komossa, S. Korpela, C. Kouveliotou, A. Kowalski, I. Kreykenbohm, L. Kuiper, D. Kunneriath, A. Kurkela, I. Kuvvetli, F. La Franca, C. Labanti, D. Lai, F. Lamb, C. Lachaud, P. Laubert, F. Lebrun, X. Li, E. Liang, O. Limousin, D. Lin, M. Linares, D. Linder, G. Lodato, F. Longo, F. Lu, N. Lund, T. Maccarone, D. Macera, S. Maestre, S. Mahmoodifar, D. Maier, P. Malcovati, J. Malzac, C. Malone, I. Mandel, V. Mangano, A. Manousakis, M. Marelli, J. Margueron, M. Marisaldi, S. Markoff, A. Markowitz, A. Marinucci, A. Martindale, G. Martínez, I. McHardy, G. Medina-Tanco, M. Mehdipour, A. Melatos, M. Mendez, S. Mereghetti, S. Migliari, R. Mignani, M. Michalska, T. Mihara, M. C. Miller, J. M. Miller, T. Mineo, G. Miniutti, S. Morsink, C. Motch, S. Motta, M. Mouchet, G. Mouret, J. Mulačová, F. Muleri, T. Muñoz-Darias, I. Negueruela, J. Neilsen, T. Neubert, A. Norton, M. Nowak, A. Nucita, P. O'Brien, M. Oertel, P. E. H. Olsen, M. Orienti, M. Orio, M. Orlandini, J. Osborne, R. Osten, F. Ozel, L. Pacciani, F. Paerels, S. Paltani, M. Paolillo, I. Papadakis, A. Papitto, Z. Paragi, J. Paredes, A. Patruno, B. Paul, F. Pederiva, E. Perinati, A. Pellizzoni, A. V. Penacchioni, U. Peretz, M. Perez, M. Perez-Torres, B. Peterson, V. Petracek, C. Pittori, J. Pons, J. Portell, A. Possenti, K. Postnov, J. Poutanen, M. Prakash, I. Prandoni, H. Le Provost, D. Psaltis, J. Pye, J. Qu, D. Rambaud, P. Ramon, G. Ramsay, M. Rapisarda, A. Rashevski, I. Rashevskaya, P. Ray, N. Rea, S. Reddy, P. Reig, M. Reina Aranda, R. Remillard, C. Reynolds, L. Rezzolla, M. Ribo, R. de la Rie, A. Riggio, A. Rios, D. Rischke, P. Rodríguez-Gil, J. Rodriguez, R. Rohlfs, P. Romano, E. M. Rossi, A. Rozanska, A. Rousseau, B. Rudak, D. Russell, F. Ryde, L. Sabau-Graziati, T. Sakamoto, G. Sala, R. Salvaterra, D. Salvetti, A. Sanna, J. Sandberg, T. Savolainen, S. Scaringi, J. Schaffner-Bielich, H. Schatz, J. Schee, C. Schmid, M. Serino, N. Shakura, S. Shore, J. Schnittman, R. Schneider, A. Schwenk, A. Schwope, A. Sedrakian, J.-Y. Seyler, A. Shearer, A. Slowikowska, M. Sims, A. Smith, D. Smith, P. Smith, M. Sobolewska, V. Sochora, P. Soffitta, P. Soleri, L. Song, A. Spencer, A. Stamerra, B. Stappers, R. Staubert, A. Steiner, N. Stergioulas, A. Stevens, G. Stratta, T. Strohmayer, Z. Stuchlik, S. Suchy, V. Suleimanov, F. Tamburini, T. Tauris, F. Tavecchio, C. Tenzer, F. Thielemann, A. Tiengo, L. Tolos, F. Tombesi, J. Tomsick, G. Torok, J. M. Torrejon, D. F. Torres, E. Torresi, A. Tramacere, I. Traulsen, A. Trois, R. Turolla, S. Turriziani, S. Typel, P. Uter, P. Uttley, A. Vacchi, P. Varniere, S. Vaughan, S. Vercellone, M. Vietri, F. Vincent, V. Vrba, D. Walton, J. Wang, Z. Wang, S. Watanabe, R. Wawrzaszek, N. Webb, N. Weinberg, H. Wende, P. Wheatley, R. Wijers, R. Wijnands, M. Wille, C. Wilson-Hodge, B. Winter, S. Walk, K. Wood, S. Woosley, X. Wu, R. Xu, W. Yu, F. Yuan, W. Yuan, Y. Yuan, G. Zampa, N. Zampa, L. Zampieri, L. Zdunik, A. Zdziarski, A. Zech, B. Zhang, C. Zhang, S. Zhang, M. Zingale, F. Zwart
The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission.
M. Feroci, J. W. den Herder, E. Bozzo, D. Barret, S. Brandt, M. Hernanz, M. van der Klis, M. Pohl, A. Santangelo, L. Stella, A. Watts, J. Wilms, S. Zane, M. Ahangarianabhari, C. Albertus, M. Alford, A. Alpar, D. Altamirano, L. Alvarez, L. Amati, C. Amoros, N. Andersson, A. Antonelli, A. Argan, R. Artigue, B. Artigues, J.-L. Atteia, P. Azzarello, P. Bakala, G. Baldazzi, S. Balman, M. Barbera, C. van Baren, S. Bhattacharyya, A. Baykal, T. Belloni, F. Bernardini, G. Bertuccio, S. Bianchi, A. Bianchini, P. Binko, P. Blay, F. Bocchino, P. Bodin, I. Bombaci, J.-M. Bonnet Bidaud, S. Boutloukos, L. Bradley, J. Braga, E. Brown, N. Bucciantini, L. Burderi, M. Burgay, M. Bursa, C. Budtz-Jørgensen, E. Cackett, F. Cadoux, P. Caïs, G. Caliandro, R. Campana, S. Campana, F. Capitanio, J. Casares, P. Casella, A. Castro-Tirado, E. Cavazzuti, P. Cerda-Duran, D. Chakrabarty, F. Château, J. Chenevez, J. Coker, R. Cole, A. Collura, R. Cornelisse, T. Courvoisier, A. Cros, A. Cumming, G. Cusumano, A. D'Ai, V. D'Elia, E. Del Monte, A. de Luca, D. de Martino, J. P. C. Dercksen, M. de Pasquale, A. De Rosa, M. Del Santo, S. Di Cosimo, S. Diebold, T. Di Salvo, I. Donnarumma, A. Drago, M. Durant, D. Emmanoulopoulos, M. H. Erkut, P. Esposito, Y. Evangelista, A. Fabian, M. Falanga, Y. Favre, C. Feldman, V. Ferrari, C. Ferrigno, M. Finger, G. Fraser, M. Frericks, F. Fuschino, M. Gabler, D. K. Galloway, J. L. Galvez Sanchez, E. Garcia-Berro, B. Gendre, S. Gezari, A. B. Giles, M. Gilfanov, P. Giommi, G. Giovannini, M. Giroletti, E. Gogus, A. Goldwurm, K. Goluchová, D. Götz, C. Gouiffes, M. Grassi, P. Groot, M. Gschwender, L. Gualtieri, C. Guidorzi, L. Guy, D. Haas, P. Haensel, M. Hailey, F. Hansen, D. Hartmann, C. A. Haswell, K. Hebeler, A. Heger, W. Hermsen, J. Homan, A. Hornstrup, R. Hudec, J. Huovelin, A. Ingram, J. In't Zand, G. Israel, K. Iwasawa, L. Izzo, H. Jacobs, F. Jetter, T. Johannsen, P. Jonker, J. Josè, P. Kaaret, G. Kanbach, V. Karas, D. Karelin, D. Kataria, L. Keek, T. Kennedy, D. Klochkov, W. Kluzniak, K. Kokkotas, S. Korpela, C. Kouveliotou, I. Kreykenbohm, L. Kuiper, I. Kuvvetli, C. Labanti, D. Lai, F. Lamb, P. Laubert, F. Lebrun, D. Lin, D. Linder, G. Lodato, F. Longo, N. Lund, T. J. Maccarone, D. Macera, S. Maestre, S. Mahmoodifar, D. Maier, P. Malcovati, I. Mandel, V. Mangano, A. Manousakis, M. Marisaldi, A. Markowitz, A. Martindale, G. Matt, I. McHardy, A. Melatos, M. Mendez, S. Mereghetti, M. Michalska, S. Migliari, R. Mignani, M. C. Miller, J. M. Miller, T. Mineo, G. Miniutti, S. Morsink, C. Motch, S. Motta, M. Mouchet, G. Mouret, J. Mulačová, F. Muleri, T. Muñoz-Darias, I. Negueruela, J. Neilsen, A. Norton, M. Nowak, P. O'Brien, P. E. H. Olsen, M. Orienti, M. Orio, M. Orlandini, P. Orleański, J. Osborne, R. Osten, F. Ozel, L. Pacciani, M. Paolillo, A. Papitto, J. Paredes, A. Patruno, B. Paul, E. Perinati, A. Pellizzoni, A. V. Penacchioni, M. A. Perez, V. Petracek, C. Pittori, J. Pons, J. Portell, A. Possenti, J. Poutanen, M. Prakash, P. Le Provost, D. Psaltis, D. Rambaud, P. Ramon, G. Ramsay, M. Rapisarda, A. Rachevski, I. Rashevskaya, P. Ray, N. Rea, S. Reddy, P. Reig, M. Reina Aranda, R. Remillard, C. Reynolds, L. Rezzolla, M. Ribo, R. de la Rie, A. Riggio, A. Rios, P. Rodríguez-Gil, J. Rodriguez, R. Rohlfs, P. Romano, E. M. R. Rossi, A. Rozanska, A. Rousseau, F. Ryde, L. Sabau-Graziati, G. Sala, R. Salvaterra, A. Sanna, J. Sandberg, S. Scaringi, S. Schanne, J. Schee, C. Schmid, S. Shore, R. Schneider, A. Schwenk, A. Schwope, J.-Y. Seyler, A. Shearer, A. Smith, D. Smith, P. Smith, V. Sochora, P. Soffitta, P. Soleri, A. Spencer, B. Stappers, A. Steiner, N. Stergioulas, G. Stratta, T. Strohmayer, Z. Stuchlik, S. Suchy, V. Sulemainov, T. Takahashi, F. Tamburini, T. Tauris, C. Tenzer, L. Tolos, F. Tombesi, J. Tomsick, G. Torok, J. M. Torrejon, D. F. Torres, A. Tramacere, A. Trois, R. Turolla, S. Turriziani, P. Uter, P. Uttley, A. Vacchi, P. Varniere, S. Vaughan, S. Vercellone, V. Vrba, D. Walton, S. Watanabe, R. Wawrzaszek, N. Webb, N. Weinberg, H. Wende, P. Wheatley, R. Wijers, R. Wijnands, M. Wille, C. Wilson-Hodge, B. Winter, K. Wood, G. Zampa, N. Zampa, L. Zampieri, L. Zdunik, A. Zdziarski, B. Zhang, F. Zwart, M. Ayre, T. Boenke, C. Corral van Damme, Erik Kuulkers, D. Lumb
The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
M. Feroci, J. den Herder, E. Bozzo, D. Barret, S. Brandt, M. Hernanz, M. van der Klis, M. Pohl, A. Santangelo, L. Stella, A. Watts, J. Wilms, S. Zane, M. Ahangarianabhari, A. Alpar, D. Altamirano, L. Alvarez, L. Amati, C. Amoros, N. Andersson, A. Antonelli, A. Argan, R. Artigue, P. Azzarello, G. Baldazzi, S. Balman, M. Barbera, T. Belloni, G. Bertuccio, S. Bianchi, A. Bianchini, P. Bodin, J.-M. Bonnet Bidaud, S. Boutloukos, J. Braga, E. Brown, N. Bucciantini, L. Burderi, M. Bursa, C. Budtz-Jørgensen, E. Cackett, F. Cadoux, P. Cais, G. Caliandro, R. Campana, S. Campana, P. Casella, D. Chakrabarty, J. Chenevez, J. Coker, R. Cole, A. Collura, T. Courvoisier, A. Cros, A. Cumming, G. Cusumano, A. D'Ai, V. D'Elia, E. Del Monte, D. de Martino, A. De Rosa, S. Di Cosimo, S. Diebold, T. Di Salvo, I. Donnarumma, A. Drago, M. Durant, D. Emmanoulopoulos, Y. Evangelista, A. Fabian, M. Falanga, Y. Favre, C. Feldman, C. Ferrigno, M. Finger, G. Fraser, F. Fuschino, D. Galloway, J. Galvez Sanchez, E. Garcia-Berro, B. Gendre, S. Gezari, A. Giles, M. Gilfanov, P. Giommi, G. Giovannini, M. Giroletti, A. Goldwurm, D. Götz, C. Gouiffes, M. Grassi, P. Groot, C. Guidorzi, D. Haas, F. Hansen, D. Hartmann, C. A. Haswell, A. Heger, J. Homan, A. Hornstrup, R. Hudec, J. Huovelin, A. Ingram, J. J. In't Zand, J. Isern, G. Israel, L. Izzo, P. Jonker, P. Kaaret, V. Karas, D. Karelin, D. Kataria, L. Keek, T. Kennedy, D. Klochkov, W. Kluzniak, K. Kokkotas, S. Korpela, C. Kouveliotou, I. Kreykenbohm, L. Kuiper, I. Kuvvetli, C. Labanti, D. Lai, F. Lamb, F. Lebrun, D. Lin, D. Linder, G. Lodato, F. Longo, N. Lund, T. Maccarone, D. Macera, D. Maier, P. Malcovati, V. Mangano, A. Manousakis, M. Marisaldi, A. Markowitz, A. Martindale, G. Matt, I. McHardy, A. Melatos, M. Mendez, S. Migliari, R. Mignani, M. Miller, J. Miller, T. Mineo, G. Miniutti, S. Morsink, C. Motch, S. Motta, M. Mouchet, F. Muleri, A. Norton, M. Nowak, P. O'Brien, M. Orienti, M. Orio, M. Orlandini, P. Orleanski, J. Osborne, R. Osten, F. Ozel, L. Pacciani, A. Papitto, B. Paul, E. Perinati, V. Petracek, J. Portell, J. Poutanen, D. Psaltis, D. Rambaud, G. Ramsay, M. Rapisarda, A. Rachevski, P. Ray, N. Rea, S. Reddy, P. Reig, M. Reina Aranda, R. Remillard, C. Reynolds, P. Rodríguez-Gil, J. Rodriguez, P. Romano, E. M. Rossi, F. Ryde, L. Sabau-Graziati, G. Sala, R. Salvaterra, A. Sanna, S. Schanne, J. Schee, C. Schmid, A. Schwenk, A. Schwope, J.-Y. Seyler, A. Shearer, A. Smith, D. Smith, P. Smith, V. Sochora, P. Soffitta, P. Soleri, B. Stappers, B. Steltzer, N. Stergioulas, G. Stratta, T. Strohmayer, Z. Stuchlik, S. Suchy, V. Sulemainov, T. Takahashi, F. Tamburini, C. Tenzer, L. Tolos, G. Torok, J. Torrejon, D. Torres, A. Tramacere, A. Trois, S. Turriziani, P. Uter, P. Uttley, A. Vacchi, P. Varniere, S. Vaughan, S. Vercellone, V. Vrba, D. Walton, S. Watanabe, R. Wawrzaszek, N. Webb, N. Weinberg, H. Wende, P. Wheatley, R. Wijers, R. Wijnands, M. Wille, C. Wilson-Hodge, B. Winter, K. Wood, G. Zampa, N. Zampa, L. Zampieri, A. Zdziarski, B. Zhang
The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO’s to yearlong transient outbursts. In this paper we report the current status of the project.
The New Hard X-ray Mission (NHXM) has been designed to provide a real breakthrough on a number of hot
astrophysical issues that includes: black holes census, the physics of accretion, the particle acceleration mechanisms, the
effects of radiative transfer in highly magnetized plasmas and strong gravitational fields. NHXM combines fine imaging
capability up to 80 keV, today available only at E<10 keV, with sensitive photoelectric imaging polarimetry. It consists
of four identical mirrors, with a 10 m focal length, achieved after launch by means of a deployable structure. Three of the
four telescopes will have at their focus identical spectral-imaging cameras, while a X-ray imaging polarimeter will be
placed at the focus of the fourth. In order to ensure a low and stable background, NHXM will be placed in a low Earth
equatorial orbit. Here we will provide an overall description of this mission and of the developments that are currently
occurring in Italy. In the meanwhile we are forming an international collaboration, with the goal to have a consortium
of leading Institutes and people that are at the forefront of the scientific and technological developments that are
relevant for this mission.
We exploited a ray-tracing Montecarlo code to investigate the effects of stray-light on the performances of the Wide Field Imager (FoV = 1.5 deg) on board the EDGE satellite. We found non negligible stray-light contamination up to ~ 8 deg off-axis angles. We discuss the benefits of a baffle in order to reduce this contamination, that would strongly affect the telescope sensitivity, and present two possible baffle designs based on results of simulations.
The SIMBOL-X formation-flight X-ray mission will be operated by ASI and CNES in 2014, with a large participation of
the French and Italian high energy astrophysics scientific community. Also German and US Institutions are contributing
in the implementation of the scientific payload. Thanks to the formation-flight architecture, it will be possible to operate
a long (20 m) focal length grazing incidence mirror module, formed by 100 confocal multilayer-coated Wolter I shells.
This system will allow us to focus X-rays over a very broad energy band, from 0.5 keV up to 80 keV and beyond, with
more than two orders of magnitude improvement in angular resolution (20 arcsec HEW) and sensitivity (0.5 µCrab on
axis @30 keV) compared to non focusing detectors used so far. The X-ray mirrors will be realized by Ni
electroforming replication, already successfully used for BeppoSAX, XMM-Newton, and JET-X/SWIFT; the
thickness trend will be about two times less than for XMM, in order to save mass. Multilayer reflecting coatings
will be implemented, in order to improve the reflectivity beyond 10 keV and to increase the field of view 812
arcmin at 30 keV). In this paper, the SIMBOL-X optics design, technology and implementation challenges will be
discussed; it will be also reported on recent results obtained in the context of the SIMBOL-X optics development
activities.
We have been performing design and optimization of the optics for the Wide Field Spectrometer (WFS): one of the core instruments of the EDGE mission whose science targets are the studies of formation and evolution of large scale structures in the universe. WFS mirrors are based on a conical approximation of the Wolter-I design fabrication technique already applied for ASCA and SUZAKU satellites. In order to give both a large effective area and grasp with small TES detector we use a very short focal length with 1.2 m and 4 reflections system for the outer diameter. The effective area and grasp including the detector efficiency and the filter transmission are 1163 cm2 and 405 cm2deg2 at 0.6 keV respectively.
How structures of various scales formed and evolved from the early Universe up to present time is a fundamental
question of astrophysics. EDGE will trace the cosmic history of the baryons from the early generations of massive
stars by Gamma-Ray Burst (GRB) explosions, through the period of galaxy cluster formation, down to the very low
redshift Universe, when between a third and one half of the baryons are expected to reside in cosmic filaments undergoing
gravitational collapse by dark matter (the so-called warm hot intragalactic medium). In addition EDGE, with its
unprecedented capabilities, will provide key results in many important fields. These scientific goals are feasible with a
medium class mission using existing technology combined with innovative instrumental and observational capabilities
by: (a) observing with fast reaction Gamma-Ray Bursts with a high spectral resolution (R ~ 500). This enables the study
of their (star-forming) environment and the use of GRBs as back lights of large scale cosmological structures; (b)
observing and surveying extended sources (galaxy clusters, WHIM) with high sensitivity using two wide field of view
X-ray telescopes (one with a high angular resolution and the other with a high spectral resolution). The mission concept
includes four main instruments: a Wide-field Spectrometer with excellent energy resolution (3 eV at 0.6 keV), a Wide-
Field Imager with high angular resolution (HPD 15") constant over the full 1.4 degree field of view, and a Wide Field
Monitor with a FOV of 1/4 of the sky, which will trigger the fast repointing to the GRB. Extension of its energy response
up to 1 MeV will be achieved with a GRB detector with no imaging capability. This mission is proposed to ESA as part
of the Cosmic Vision call. We will briefly review the science drivers and describe in more detail the payload of this
mission.
Future X-ray telescopes like SIMBOL-X will operate in a wide band of the X-ray spectrum (from 0.1 to 80 keV); these
telescopes will extend the optical performances of the existing soft X-ray telescopes to the hard X-ray band, and in
particular they will be characterized by a angular resolution (conveniently expressed in terms of HEW, Half-Energy-
Width) less than 20 arcsec. However, it is well known that the microroughness of the reflecting surfaces of the optics
causes the scattering of X-rays. As a consequence, the imaging quality can be severely degraded. Moreover, the X-ray
scattering can be the dominant problem in hard X-rays because its relevance is an increasing function of the photon
energy. In this work we consistently apply a numerical method and an analytical one to evaluate the X-ray scattering
impact on the HEW of an X-ray optic, as a function of the photon energy: both methods can also include the effects of
figure errors in determining the final HEW. A comparison of the results obtained with the two methods for the particular
case of the SIMBOL-X X-ray telescope will be presented.
KEYWORDS: Point spread functions, Calibration, X-ray telescopes, Charge-coupled devices, Monte Carlo methods, Galaxy groups and clusters, Wavelet transforms, Telescopes, Error analysis, X-rays
We are exploiting the Swift X-ray Telescope (XRT) deepest GRB follow-up observations to study the cosmic
X-Ray Background (XRB) population in the 0.2-10 keV energy band. We present some preliminary results of a
serendipitous survey performed on 221 fields observed with exposure longer than 10 ks. We show that the XRT is
a profitable instrument for surveys and that it is particularly suitable for the search and observation of extended
objects like clusters of galaxies. We used the brightest serendipitous sources and the longest observations to test
the XRT optics performance and the background characteristics all over the field of view, in different energy
bands during the first 2.5 years of fully operational mission.
Simbol-X, an hard X-ray mission proposed by a consortium of European laboratories, will operate on a broad
energy range (0.570 keV) providing a large collecting area ( ~ 1500 cm2 at 1.5 keV and ~ 450 cm2 at 30 keV)
and a good imaging capability over the entire energy range. Relying on two spacecrafts in a formation flight
configuration, Simbol-X will use, for the first time, a 20 meters focal length X-ray concentrator with multilayers
coated mirrors that efficiently focalize photons above 10 keV and enhance the sensitivity up to 70 keV.
Thanks to a ray-tracing code, we simulated the Simbol-X optics performance and investigated the contamination
at the focal plane caused by stray−light from diffuse cosmic X-ray background. A dedicated X-ray baffle
is mandatory to minimize this contamination that otherwise, would strongly affect the telescope sensitivity. In
this paper we investigate different X-ray baffle designs and show their efficiency in reducing the stray−light.
The X-ray telescope (XRT) on board the Swift Gamma Ray Burst Explorer has successfully operated since the spacecraft
launch on 20 November 2004, automatically locating GRB afterglows, measuring their spectra and lightcurves and
performing observations of high-energy sources. In this work we investigate the properties of the instrumental
background, focusing on its dynamic behavior on both long and short timescales. The operational temperature of the
CCD is the main factor that influences the XRT background level. After the failure of the Swift active on-board
temperature control system, the XRT detector now operates at a temperature range between -75C and -45C thanks to a
passive cooling Heat Rejection System. We report on the long-term effects on the background caused by radiation,
consisting mainly of proton irradiation in Swift's low Earth orbit and on the short-term effects of transits through the
South Atlantic Anomaly (SAA), which expose the detector to periods of intense proton flux. We have determined the
fraction of the detector background that is due to the internal, instrumental background and the part that is due to
unresolved astrophysical sources (the cosmic X-ray background) by investigating the degree of vignetting of the
measured background and comparing it to the expected value from calibration data.
The Swift X-ray Telescope (XRT) is a CCD based X-ray telescope designed for localization, spectroscopy and long term
light curve monitoring of Gamma-Ray Bursts and their X-ray afterglows. Since the launch of Swift in November 2004,
the XRT has undergone significant evolution in the way it is operated. Shortly after launch there was a failure of the
CCD thermo-electric cooling system, which led to the XRT team being required to devise a method of keeping the CCD
temperature below −50C utilizing only passive cooling by minimizing the exposure of the XRT radiator to the Earth. We
present in this paper an update on how the modeling of this passive cooling method has improved in first ~1000 days
since the method was devised, and the success rate of this method in day-to-day planning. We also discuss the changes
to the operational modes and onboard software of the XRT. These changes include improved rapid data product
generation in order to improve speed of rapid Gamma-Ray Burst response and localization to the community; changes to
the way XRT observation modes are chosen in order to better fine tune data acquisition to a particular science goal;
reduction of "mode switching" caused by the contamination of the CCD by Earth light or high temperature effects.
We present science highlights and performance from the Swift X-ray Telescope (XRT), which was launched on November
20, 2004. The XRT covers the 0.2-10 keV band, and spends most of its time observing gamma-ray burst (GRB)
afterglows, though it has also performed observations of many other objects. By mid-August 2007, the XRT had observed
over 220 GRB afterglows, detecting about 96% of them. The XRT positions enable followup ground-based optical
observations, with roughly 60% of the afterglows detected at optical or near IR wavelengths. Redshifts are measured
for 33% of X-ray afterglows. Science highlights include the discovery of flaring behavior at quite late times, with
implications for GRB central engines; localization of short GRBs, leading to observational support for compact merger
progenitors for this class of bursts; a mysterious plateau phase to GRB afterglows; as well as many other interesting
observations such as X-ray emission from comets, novae, galactic transients, and other objects.
We present a mission designed to address two main themes of the ESA Cosmic Vision Programme: the Evolution of the Universe and its Violent phenomena. ESTREMO/WFXRT is based on innovative instrumental and observational approaches, out of the mainstream of observatories of progressively increasing area, i.e.: Observing with fast reaction transient sources, like GRB, at their brightest levels, thus allowing high resolution spectroscopy. Observing and surveying through a X-ray telescope with a wide field of view and with high sensitivity extended sources, like cluster and Warm Hot Intragalactic Medium (WHIM). ESTREMO/WFXRT will rely on two cosmological probes: GRB and large scale X-ray structures. This will allow measurements of the dark energy, of the missing baryon mass in the local universe, thought to be mostly residing in outskirts of clusters and in hot filaments (WHIM) accreting onto dark matter structures, the detection of first objects in the dark Universe, the history of metal formation. The key asset of ESTREMO/WFXRT with regard to the study of Violent Universe is the capability to observe the most extreme objects of the Universe during their bursting phases. The large flux achieved in this phase allows unprecedented measurements with high resolution spectroscopy. The mission is based on a wide field X-ray/hard X-ray monitor, covering >1/4 of the sky, to localize transients; fast (min) autonomous follow-up with X-ray telescope (2000 cm2) equipped with high resolution spectroscopy transition edge (TES) microcalorimeters (2eV resolution below 2 keV) and with a wide field (1°) for imaging with 10" resolution (CCD) extended faint structures and for cluster surveys. A low background is achieved by a 600 km equatorial orbit. The performances of the mission on GRB and their use as cosmological beacons are presented and discussed.
The Swift X-ray Telescope (XRT) focal plane camera is a front-illuminated MOS CCD, providing a spectral response kernel of 144 eV FWHM at 6.5 keV. We describe the CCD calibration program based on celestial and on-board calibration sources, relevant in-flight experiences, and developments in the CCD response model. We illustrate how the revised response model describes the calibration sources well. Loss of temperature control motivated a laboratory program to re-optimize the CCD substrate voltage, we describe the small changes in the CCD response that would result from use of a substrate voltage of 6V.
The Swift X-ray Telescope (XRT) is designed to make astrometric,
spectroscopic and photometric observations of the X-ray emission from Gamma-ray bursts and their afterglows in the 0.2-10 keV energy band. Here we report the initial results of the analysis of Swift XRT effective area as measured both on-axis and off-axis during the in-flight calibration phase using the laboratory results and ray-tracing simulations as a starting point. Our analysis includes the study of the effective area at a range of energies, for different event grade selection and operating modes using two astronomical sources characterized by different intrinsic spectra.
The Swift X-ray Telescope (XRT) is a CCD based X-ray telescope designed for localization, spectroscopy and long term light curve monitoring of Gamma-Ray Bursts and their X-ray afterglows. Shortly after launch there was a failure of the thermo-electric cooler on the XRT CCD. Due to this the Swift XRT Team had the unexpected challenge of ensuring that the CCD temperature stayed below -50C utilizing only passive cooling through a radiator mounted on the side of the Swift. Here we show that the temperature of the XRT CCD is correlated with the average elevation of the Earth above the XRT radiator, which is in turn related to the targets that Swift observes in an orbit. In order to maximize passive cooling of the XRT CCD, the XRT team devised several novel methods for ensuring that the XRT radiator's exposure to the Earth was minimized to ensure efficient cooling. These methods include: picking targets on the sky for Swift to point at which are known to put the spacecraft into a good orientation for maximizing XRT cooling; biasing the spacecraft roll angle to point the XRT radiator away from the Earth as much as possible; utilizing time in the SAA, in which all of the instruments on-board Swift are non-operational, to point at "cold targets"; and restricting observing time on "warm" targets to only the periods at which the spacecraft is in a favorable orientation for cooling. By doing this at the observation planning stage we have been able to minimize the heating of the CCD and maintain the XRT as a fully operational scientific instrument, without compromising the science goals of the Swift mission.
Various X-ray satellites have used the Crab as a standard candle to perform their calibrations in the past. The calibration of XMM-Newton, however, is independent of the Crab nebula, because this object has not been used to adjust spectral calibration issues. In 2004 a number of special observations were performed to measure the spectral parameters and the absolute flux of the Crab with XMM-Newton's EPIC-pn CCD camera. We describe the results of the campaign in detail and compare them with data of four current missions (Integral, Swift, Chandra, RXTE) and numerous previous missions (ROSAT, EXOSAT, Beppo-SAX, ASCA, Ginga, Einstein, Mir-HEXE).
The Swift X-ray Telescope (XRT) is designed to make astrometric, spectroscopic and photometric observations of the X-ray emission from
Gamma-ray bursts and their afterglows, in the energy band 0.2-10 keV.
Swift was successfully launched on 2004 November 20. Here we report the results of the analysis of Swift XRT Point Spread Function (PSF) as measured in the first four months of the mission during the instrument calibration phase.
The analysis includes the study of the PSF of different point-like sources both on-axis and off-axis with different spectral properties. We compare the in-flight data with the expectations from the on-ground calibration. On the basis of the calibration data we built an analytical model to reproduce the PSF as a function of the energy and the source position within the detector which can be applied in the PSF correction calculation for any extraction region geometry.
The X-ray telescope (XRT) on board Swift, launched on 2004 Nov 20, is performing astrometric, spectroscopic and photometric observations of the X-ray emission from Gamma-ray burst afterglows in the energy band 0.2-10 keV. In this paper, we describe the results of the in-flight calibration relative to the XRT timing resolution and absolute timing capabilities. The timing calibration has been performed comparing the main pulse phases of the Crab profile obtained from several XRT observations in Low Rate Photodiode and Windowed Timing mode with those from contemporaneous RXTE observations. The XRT absolute timing is well reproduced with an accuracy of 200 μs for the Low Rate Photodiode and 300 μs for the Windowed Timing mode.
The Swift X-ray Telescope (XRT) is designed to make astrometric, spectroscopic and photometric observations of the X-ray emission from Gamma-ray bursts and their afterglows, in the energy band 0.2 - 10 keV. Here we report first results of the analysis of Swift XRT effective area at five different energies as measured during the end-to-end calibration campaign at the Panter X-ray beam line facility. The analysis comprises the study of the effective area both on-axis and off-axis for different event grade selection. We compare the laboratory results with the expectations and show that the measured effective area meets the mission scientific requirements.
The SWIFT X-ray Telescope (XRT) is designed to make astrometric, spectroscopic and photometric observations of the X-ray emission from Gamma-ray bursts and their afterglows, in the energy band 0.2 - 10 keV. Here we report the results of the analysis of SWIFT XRT Point Spread Function (PSF) as measured during the end-to-end calibration campaign at the Panter X-Ray beam line facility. The analysis comprises the study of the PSF both on-axis and off-axis. We compare the laboratory results with the expectations from the ray-tracing software and from the mirror module tested as a single unit. We show that the measured HEW meets the mission scientific requirements. On the basis of the calibration data we build an analytical model which is able to reproduce the PSF as a function of the energy and the position within the detector.
The Swift X-ray Telescope (XRT) is designed to make astrometric, spectroscopic, and photometric observations of X-ray emission from Gamma-ray Bursts and their afterglows in the energy band 0.2-10 keV. In order to provide rapid-response, automated observations of these randomly occurring objects without ground intervention, the XRT must be able to observe objects covering some seven orders of magnitude in flux, extracting the maximum possible science from each one. This requires a variety of readout modes designed to optimise the information collected in response to shifting scientific priorities as the flux from the burst diminishes.
The XRT will support four major readout modes: imaging, two timing modes and photon-counting, with several sub-modes. We describe in detail the readout modes of the XRT. We describe the flux ranges over which each mode will operate, the automated mode switching that will occur and the methods used for collection of bias information for this instrument. We also discuss the data products produced from each mode.
The essential optical components of the Swift X-ray Telescope (XRT) are already developed items. They are: the flight spare x-ray mirror from the JET-X/Spectrum-X program and a MOS CCD (CCD22) of the type currently operating in orbit as part of the EPIC focal plane camera on the XMM- Newton. The JET-X mirrors were first calibrated at the Max Plank Institute for Extraterrestrial Physics' (MPE) Panter facility, Garching, Germany in 1996. Half energy widths (HEW) of 16 arc seconds at 1.5 keV were confirmed for the two flight mirrors and the flight spare. The calibration of the flight spare was repeated at Panter in July 2000 in order to establish whether any changes had occurred during the four years that the mirror had been in storage at the OAB, Milan, Italy. This results reported in this paper, confirm that the resolution of the JET-X mirrors has remained stable over this storage period. In an extension of this test program, the flight spare EPIC camera was installed at the focus of the JET-X mirror to simulate the optical system of the Swift X-ray telescope. On-axis and off-axis point spread functions (PSFs) were measured and calibration data sets were used to obtain centroid positions of X-ray point sources. The results confirmed Swift's ability to determine the centroid positions of sources at 100mCrab brightness to better than 1 arc second and provided a calibration of the centroiding process as a function of source flux and off axis angle. The presence of background events in the image frame introduced errors in the centroiding process, making the choice of centroiding algorithm important. Algorithm performance and the trade-off between processing speed and centroiding accuracy were investigated.
Construction of the flight model joint European X-ray telescope (JET-X) for the Russian spectrum-X mission has been completed and performance tests and calibration of the instrument have been carried out. Separate measurements of the responses of the x-ray mirrors, the CCD detectors and the optical filters already indicate that JET-X will achieve spatial resolutions of around 20 arcsec, an on-axis collecting area of 310 cm2 at 1.5 keV and an energy resolution of 130 eV at 6 keV. As a final step in the calibration of the telescope assembly, end-to-end x-ray tests on the complete instrument have been performed in the x-ray beam line facility at MPE Garching. Results from this calibration program are reported and the overall response of the two x-ray telescopes are compared with the previously measured responses of the mirror, the CCD detectors and the optical filters. In-orbit sensitivity responses are derived from these calibration data sets, for the normal operating modes of JET-X.
The scientific instrumentation on board the x-ray astronomy satellite BeppoSAX, launched at the end of April 1996, includes four identical mirror units, each composed of 30 nested grazing incidence mirrors. The focal plane detectors are 3 identical position sensitive medium energy gas scintillation proportional counters, operating in the energy range 1.3 - 10 keV and 1 low energy gas scintillation proportional counter in the range 0.1 - 10 keV. During the science verification phase (July-November 96) a selected number of x-ray targets has been observed in order to have an in-flight calibration of the instrument. This paper describes some results with particular emphasis to the on axis and off axis behavior of the optical systems.
The x-ray mirror calibration program for the JET-X telescope on spectrum-X has recently been carried out at the 130 m long Panter x-ray beam line of the Max Plank Institute fur Extraterrestriche Physik. The excellent spatial resolution achieved with these mirrors, 15 arcsec half energy width (HEW) at 1.5 keV and 19 arcseconds at 8 keV, has proved to be difficult to measure precisely using previously established calibration methods (involving either slit detectors or the ROSAT PSPC imaging proportional counter). New diagnostic techniques have, therefore, been developed using a CCD imaging camera which utilized newly available x- ray CCD technology. Details of the calibration technique and the performance of the camera are provided and results are compared with those obtained from the slit and PSPC detectors.
The joint European x-ray telescope (JET-X) is one of the core scientific instruments of the RUssian SPECTRUM X-(gamma) astrophysics mission. JET-X is designed to study the emission from x-ray sources in the band of 0.3-10 keV; in particular to meet primary scientific goals in cosmology and extragalactic astronomy. JET-X consists of two identical, coaligned x-ray telescopes, each with a spatial resolution of better than 30 arcsec half energy width. Focal plane imaging is provided by cooled x-ray sensitive CCD detectors which combine high spatial resolution with good spectral resolution, including coverage of the iron line complex around 7 keV at a resolution of (Delta) E/E approximately 1.5 percent. Each telescope is composed of a nested array of 12 mirror shells with an aperture of 300 mm and focal length of 3500 mm; the total effective area is 330 cm2 at 1.5 keV and 145 cm2 at 8.1 keV. The mirror shells have a Wolter I geometry and are manufactured by an electroforming replica process. The paper presents the characteristic of the flight model x-ray optics.
The scientific instrumentation on board the x-ray astronomy satellite SAX includes a medium energy concentrator/spectrometer (MECS), operating in the energy range 1.3 - 10 keV, which consists of three identical instruments, each composed by a grazing incidence mirror unit with focal length of 1850 mm and by a position sensitive gas scintillation proportional counter. The MECS flight instruments have been calibrated at the X-ray PANTER facility of the Max Planck Institute and the preliminary results are presented in the paper.
The Joint European X-ray Telescope, JET-X, is one of the core instruments of the scientific payload of the Russian SPECTRUM-X astrophysics mission. Jet-X is designed to study the emission from x-ray sources in the band of 0.3 - 10 KeV; particularly to meet primary scientific goals in cosmology and extragalactic astronomy. JET-X consists of two identical, coaligned x-ray telescopes, each with a spatial resolution of 30 arcsecond half energy width (HEW) or better. Focal plane imaging is provided by cooled x-ray sensitive CCD detectors which will combine high spatial resolution with good spectral resolution, with particular emphasis on high sensitivity and spectral resolution around the 7 KeV Fe-line complex. Each telescope is composed of a nested array of 12 mirrors with an aperture of 0.3 m and focal length of 3.5 m; the total effective area is 360 cm2 at 1.5 KeV and 140 cm2 at 8 KeV. The mirror shells have a Wolter I geometry and are manufactured by a nickel electroforming replica process. The paper presents a status report of the qualification model of the x-ray optics.
The scientific instrumentation onboard the Italian X-ray Astronomy Satellite SAX foresees four X-ray Mirror Units operating in the energy range 0.1 - 10 KeV with spatial resolution of 1 arcmin Half Power Radius. The Mirror Units are composed of thirty nested confocal and coaxial very thin double cone mirrors made by a nickel electroforming replica technique. The paper presents the X-ray characterization data obtained at the PANTER facility on the Flight Mirror Units.
The scientific instrumentation onboard the Italian X-ray astronomy satellite SAX foresees X- ray imaging Mirror Units (MU) operating in the energy range 0.1 - 10 KeV with spatial resolution of 1 arcmin HPR. The MU are composed of thirty nested confocal and coaxial very thin double cone mirrors, made by a nickel electroforming replica technique. The paper presents the results obtained with the Engineering Qualification Model of the MU, which are well within the scientific requirements.
The Joint European X-ray Telescope, ''JET-X'', which is to be the core instrument of the Russian Spectrum-X astrophysics mission in 1994, will study the 3-10 keV-band emission from X-ray sources. The instrument is configured as two identical coaligned X-ray imaging telescopes; focal plane imaging is furnished by a cooled CCD detector which yields both good spectral resolution and high spatial resolution. The mirror shells have Wolter I geometry, and are manufactured by means of an electroforming replication process.
A development model of the X-ray imaging concentrators designed for the Italian satellite for X-ray astronomy (SAX) was used to verify the thermomechanical and imaging properties of the optical system. The development model has a set of 29 mirrors (of the total of 30 mirrors of SAX), which are representative of the final mirrors except for the microroughness, which is about 3 nm instead of less than 1 nm. Results are presented of the optical system tests with low-energy X-ray beam (E = 0.27 KeV) and with visible light.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.