The CHEOPS (CHaracterising ExOPlanet Satellite), which is an ESA mission developed in cooperation with Switzerland and a number of other member-states, is the first one dedicated to search for transits by means of ultrahigh precision photometry on bright stars already known to host planets. The optical design is based on a Ritchey-Chretien style telescope to provide a de-focussed image of the target stars.
The telescope’s mirrors M1, M2 as well as the focal plane detector are supported by a thermally controlled CFRP structure suspended on isostatic mounts. The dimensional stability of the structural system supporting the optics is a key requirement as it directly impacts the instrument’s accuracy. The M1 and M2 mirrors are supported by a tubular CFRP telescope design which has been optimized by analyses down to carbon fibre layer level with the support of extensive sample test results for model correlation and accurate dimensional stability predictions. This sample characterization test campaign has been conducted on samples with different carbon fibre layups (orientation and stack sequence) to measure accurately the Coefficient of Thermal Expansion (CTE) over a wide temperature range extending from -80°C to +80°C. Using the correlated Finite Element Model, the fibre orientation layup that minimized the relative displacement between the M1 and M2 mirrors, including the consideration of the thermo-elastic contributions of the isostatic mounts on the overall stability of this optical system, has been identified and selected for the baseline design of the CHEOPS Structure.
A dedicated Structural and Thermal Model (STM2), which was then refurbished to a PFM, was manufactured and tested with an ad hoc setup to verify the overall structural stability of the optical train assembly [2]. The relative distance between M1 and M2 was measured under thermal vacuum conditions using laser interferometer techniques. Thermal cycling tests were initially conducted to eliminate and characterize settling effects. Then, the structure’s stability was measured at three stabilised operational temperatures: -5, -10 and -15°C. The thermally induced M1-M2 misalignment on the optical axis was measured to be between -0.156 and -0.168 micron/°C. Relative mirror tilt and lateral centre shifts were also measured. The obtained focal distance, tilt and centre shift stability between mirrors M1 and M2 were all compliant with the system level requirements such that both an STM and PFM model of the CHEOPS CFRP Structure were successfully qualified and delivered in due time for integration on the spacecraft.
SPICE is a high resolution imaging spectrometer operating at extreme ultraviolet wavelengths, 70.4 – 79.0 nm and 97.3 -
104.9 nm. It is a facility instrument on the Solar Orbiter mission. SPICE will address the key science goals of Solar
Orbiter by providing the quantitative knowledge of the physical state and composition of the plasmas in the solar
atmosphere, in particular investigating the source regions of outflows and ejection processes which link the solar surface
and corona to the heliosphere. By observing the intensities of selected spectral lines and line profiles, SPICE will derive
temperature, density, flow and composition information for the plasmas in the temperature range from 10,000 K to
10MK. The instrument optics consists of a single-mirror telescope (off-axis paraboloid operating at near-normal
incidence), feeding an imaging spectrometer. The spectrometer is also using just one optical element, a Toroidal Variable
Line Space grating, which images the entrance slit from the telescope focal plane onto a pair of detector arrays, with a
magnification of approximately x5. Each detector consists of a photocathode coated microchannel plate image
intensifier, coupled to active-pixel-sensor (APS). Particular features of the instrument needed due to proximity to the Sun
include: use of dichroic coating on the mirror to transmit and reject the majority of the solar spectrum, particle-deflector
to protect the optics from the solar wind, and use of data compression due to telemetry limitations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.