Space lidar instruments for missions like AEOLUS or MERLIN require advanced high-power laser systems with according technical and financial effort. In order to increase the impact of such missions, it is advantageous to expand the versatility of their instruments. In the case of trace gas sensing, the ability to detect multiple trace gas species with the same instrument greatly enhances their value. Multi-species trace gas differential absorption lidar (DIAL) systems require absolute frequency referencing across large spectral bandwidths. While absorption cell based references need individual lasers at online and offline wavelengths for each species, a broadband mode locked laser – offering a frequency comb – can provide the required frequency accuracy over the complete spectral range of the lidar instrument. In the frame of the LEMON project, we developed a combined design for an absolute frequency reference based on a wavemeter for coarse frequency determination (<500 MHz accuracy) and a broadband mode locked laser for precise frequency detection by means of heterodyne beat generation. It features a large spacing of 1 GHz and is optimized for spectroscopic lidar applications covering the spectral range from 980 nm to 1100 nm and 1500 nm to 2300 nm. The achieved accuracy of <100 kHz of the optical frequency, satisfies the requirements needed to atmospheric gas analysis from space. The broadband approach offers a cost-effective solution to address multiple gas species simultaneously. The system can also be adapted to different spectral ranges of interest for gas spectroscopy and other applications. Additional presentation content can be accessed on the supplemental content page.
We present design and first performance results of an airborne differential absorption lidar laser transmitter that can measure CO2 and water isotopes at different wavelengths around 2 µm with the same setup. This laser will be integrated into an airborne lidar, intended to demonstrate future spaceborne instrument characteristics with high-energy (several tens of millijoules nanosecond-pulses) and high optical frequency-stability (less than a few hundreds of kilohertz long-term drift).
The transmitter consists of a widely tunable OPO with successive OPA that are pumped by a Nd:YAG MOPA and generates the on- and offline wavelength of the addressed species with narrow bandwidth.
The Lidar Emitter and Multi-species greenhouse gases Observation iNstrument (LEMON) is a novel Differential Absorption Lidar (DIAL) sensor concept for greenhouse gases and water vapor measurements from space.1,2 It is based on a versatile transmitter allowing for addressing various absorption lines of different molecules. This highly flexible emitter design requires a universal frequency referencing scheme. Here we present a concept employing a 1 GHz frequency comb, which allows the absolute referencing over a spectral range from 0.95 μm to 1.15 μm. By using an intermediate frequency doubling stage, this allows for DIAL measurements on CO2, H2O/HDO, and CH4 in the 2 μm range. Absolute referencing is obtained by using a GPS disciplined oscillator as the common time base for frequency measurements. The concept of the LEMON Frequency Reference UnIT (FRUIT) is designed to match the requirements of the vibration loads associated with airborne operation to allow implementation on the airborne demonstrator for LEMON. In addition, the requirements for a future space development are considered in the design. For example, radiation critical items have been identified and radiation tested within the project and a compact wavemeter design has been implemented.
We report on the current design and preliminary developments of the airborne Lidar Emitter and Multi-species greenhouse gases Observation iNstrument (LEMON), which is aiming at probing H2O and its isotope HDO at 1982 nm, CO2 at 2051 nm, and potentially CH4 at 2290 nm, with the Differential Absorption Lidar method (DIAL). The infrared emitter is based on the combination of two Nested Cavity OPOs (NesCOPOs) with a single optical parametric amplifier (OPA) line for high-energy pulse generation. This configuration is enabled by the use of high-aperture periodically poled KTP crystals (PPKTP), which provide efficient amplification in the spectral range of interest around 2 μm with slight temperature adjustments. The parametric stages are pumped with a Nd:YAG laser providing 200 mJ nanosecond double pulses at 75 Hz. According to parametric conversion simulations supported by current laboratory experiments, output energies in the 40 - 50 mJ range are expected in the extracted signal beam whilst maintaining a good beam quality (M² < 2). The ruler for all the optical frequencies involved in the system is planned to be provided by a GPS referenced frequency comb with large mode spacing (1 GHz) against which the emitter output pulses can be heterodyned. The frequency precision measurement is expected to be better than 200 kHz for the optical frequencies of interest. The presentation will give an overview of the key elements of design and of preliminary experimental characterizations of sub-systems building blocks.
The French-German Methane Remote Sensing LIDAR Mission (MERLIN) planned for launch in 2020 aims to provide a global methane concentration map. The instrument is a differential absorption LIDAR (DIAL) system measuring the column-weighted dry-air mixing ratios of methane with a horizontal resolution of 50 km employing an absorption line at 1645 nm [1].
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.