We present our last numerical and experimental results on a mid-infrared source based on a tunable Yb-based hybrid MOPA pump and a Backward Wave Optical Parametric Oscillators (BWOPO). The BWOPO has a record-low oscillation threshold of 19.2 MW/cm2 and generates mJ-level output with an overall conversion efficiency exceeding 70%. The BWOPO acts a frequency shifter of the pump radiation toward the forward wave, maintaining the pump spectral properties. The demonstrated tuning range of 10 GHz is already compliant for DIAL applications. We have also developed advanced numerical modelling of the BWOPO taking into account spectral and, for the first time, spatial beam profiles.
Efficiencies of nonlinear optical-to-terahertz (THz) conversion below one percent remain a limiting factor for applications of multicycle THz radiation like THz-driven acceleration and inspired the use of multi-line pump spectra. To overcome the difficulty of phase stabilization of multiple narrowband sources required by the multi-line approach, we exploit its temporal analog, i.e., regular pulse trains with THz repetition rate, in which the THz waves generated by rectifying the individual pulses add coherently. The optical setup producing the pulse trains consists of motorized interferometers and enables precise control over the pulse train parameters like pulse spacing and amplitude. It is operated with a laser providing 400 fs pulses and energies of up to 110 mJ, which is the highest yet attempted for a pulse-train-type experiment. Opposed to earlier work, pulse division is done after amplification making the system more flexible in terms of tuning the pulse number. We present initial results of an experimental campaign of multicycle THz generation in custom periodically poled crystals with large apertures up to 10x20 mm2. The available pump energy allows filling these apertures at high fluences, promising increased THz yields. We investigate the dependence of the conversion efficiency on the single pulse duration and aim to find the optimum pulse number for different crystal lengths to determine the efficiency limitations in a regime avoiding laser-induced damage. Since crystal length and pulse number define the bandwidth of the THz pulses, this work demonstrates a path to an optimized THz source tunable to different requirements of applications.
A highly efficient mirrorless OPO tunable in the mid-infrared around 2 μm has been developed and characterized in an original pumping configuration comprising a tunable high power hybrid Ytterbium laser MOPA (Master Oscillator Power Amplifier) in the nanosecond regime. The hybrid pump laser is based on a fiber laser seeder continuously tunable over several GHz at 1030 nm, which is shaped in the time domain with acousto-optic modulators (AOM), and power amplified in a dual stage Ytterbium doped fiber amplifiers, followed by two Yb:YAG bulk amplifiers. The pump delivers up to 3.5 mJ of energy within narrowband 15 ns pulses with a 5 kHz repetition rate. The output was focused into Periodically Poled KTP (PPKTP) crystals with a quasi-Phase Matching (QPM) period of 580 nm, producing Backward Optical Parametric Oscillation (BWOPO), with a forward signal wave at 1981 nm and a backward traveling idler at 2145 nm. We report significant optical to optical efficiencies exceeding 70 % depending on crystal length and input power. As theoretically expected, the forward wave could be continuously tuned over 10 GHz following the pump frequency sweep, while the backward wave remains almost stable, both being free from mode hops. These properties obtained from an optical arrangement without free-space cavities are attractive for future space Integrated Path Differential Absorption (IPDA) Lidar applications, which require robust and efficient tunable frequency converters in the mid-infrared. Additional presentation content can be accessed on the supplemental content page.
Yb:KYW laser pulses at 1030 nm were frequency-broadened and compressed by single-pass propagation in a 12 mm single-domain KTP crystal. The compression mechanism relies on refractive index modulation by the polariton shock-wave generated by impulse excitation of the lattice vibration modes, with a large dipole moment parallel to the crystal polar axis. Coherent Stokes sidebands generated by the index modulation lead to pulse compression under normal dispersion conditions. A compression ratio of about eight times was obtained for 170fs-long Yb:KYW laser pulses.
We report on the current design and preliminary developments of the airborne Lidar Emitter and Multi-species greenhouse gases Observation iNstrument (LEMON), which is aiming at probing H2O and its isotope HDO at 1982 nm, CO2 at 2051 nm, and potentially CH4 at 2290 nm, with the Differential Absorption Lidar method (DIAL). The infrared emitter is based on the combination of two Nested Cavity OPOs (NesCOPOs) with a single optical parametric amplifier (OPA) line for high-energy pulse generation. This configuration is enabled by the use of high-aperture periodically poled KTP crystals (PPKTP), which provide efficient amplification in the spectral range of interest around 2 μm with slight temperature adjustments. The parametric stages are pumped with a Nd:YAG laser providing 200 mJ nanosecond double pulses at 75 Hz. According to parametric conversion simulations supported by current laboratory experiments, output energies in the 40 - 50 mJ range are expected in the extracted signal beam whilst maintaining a good beam quality (M² < 2). The ruler for all the optical frequencies involved in the system is planned to be provided by a GPS referenced frequency comb with large mode spacing (1 GHz) against which the emitter output pulses can be heterodyned. The frequency precision measurement is expected to be better than 200 kHz for the optical frequencies of interest. The presentation will give an overview of the key elements of design and of preliminary experimental characterizations of sub-systems building blocks.
Mirrorless optical parametric oscillators (MOPO) represent a special class of parametric devices based on three-wave nonlinear interaction in which the generated photons counter-propagate. Owing to the phase-matching condition of the counter-propagating waves, MOPOs can sustain oscillation without mirrors and present unique and useful tuning and spectral properties. In this paper, we will review our recent advances in structuring technology to achieve quasi-phase matching periodicities as short as 500 nm in Rb-doped KTiOPO4, which are necessary to compensate for the large phase mismatch. We will also review the performance of MOPOs both in the ps- and ns- pumping regime. In the latter, our crystals reach single-pass conversion efficiencies exceeding 50%, with mJ-level output energies.
Since the first demonstration of electric field poling in 1993, the use of quasi-phase matching (QPM) technique has gained wide adoption in a multitude of applications. The QPM field today is dominated mainly by the ferroelectric oxide materials from LiNbO3 (LN) and KTiOPO4 (KTP) families, where QPM structures are implemented by the electric field poling technique. While typical QPM devices have a fixed-period, one-dimensional domain grating design, which is the most straightforward to implement, numerous applications require the ability to continuously tune the wavelength over a wider spectral range. For applications where temperature tuning is not desired, a fan-out QPM grating design may be advantageous. The tuning here is performed by transverse translation of the structure in respect to the pump beam, while keeping the crystal temperature constant. While the implementation of fan-out gratings is reasonably well researched in LN, there is a lack of reliable data for KTP isomorphs. Taking into account the high domain growth anisotropy in KTP, an important factor becomes the angle between the domain walls and the b-axis of the crystal. This angle directly affects the quality and dimensions of the QPM device. However, its upper boundary has not been determined to date. In this work we discuss the prospects and limitations of PPKTP devices with fan-out grating designs. We present a fan-out PPRKTP device, where the transverse fan-out rate is 0.5 μm/mm. In an OPO configuration pumped by 532 nm such PPRKTP crystal is able to provide continuously tunable radiation between 0.7 – 2.2 μm.
Since the early 1990’s, a substantial effort has been devoted to the development of quasi-phased-matched (QPM) nonlinear devices, not only in ferroelectric oxides like LiNbO3, LiTaO3 and KTiOPO4 (KTP), but also in semiconductors as GaAs, and GaP. The technology to implement QPM structures in ferroelectric oxides has by now matured enough to satisfy the most basic frequency-conversion schemes without substantial modification of the poling procedures. Here, we present a qualitative leap in periodic poling techniques that allows us to demonstrate devices and frequency conversion schemes that were deemed unfeasible just a few years ago. Thanks to our short-pulse poling and coercive-field engineering techniques, we are able to demonstrate large aperture (5 mm) periodically poled Rb-doped KTP devices with a highly-uniform conversion efficiency over the whole aperture. These devices allow parametric conversion with energies larger than 60 mJ. Moreover, by employing our coercive-field engineering technique we fabricate highlyefficient sub-µm periodically poled devices, with periodicities as short as 500 nm, uniform over 1 mm-thick crystals, which allow us to realize mirrorless optical parametric oscillators with counter-propagating signal and idler waves. These novel devices present unique spectral and tuning properties, superior to those of conventional OPOs. Furthermore, our techniques are compatible with KTA, a KTP isomorph with extended transparency in the mid-IR range. We demonstrate that our highly-efficient PPKTA is superior both for mid-IR and for green light generation – as a result of improved transmission properties in the visible range. Our KTP-isomorph poling techniques leading to highly-efficient QPM devices will be presented. Their optical performance and attractive damage thresholds will be discussed.
High-energy mid-infrared nanosecond sources are required in a number of applications including biomedicine, remote sensing, and standoff countermeasures, to name just a few. Sources which serve these applications include mid-infrared fiber and solid-state lasers, quantum cascade lasers, as well as optical parametric oscillators (OPO).
A singly-resonant OPO (SRO) based on AgGaSe2 (AGSe) intracavity pumped at ~1.85 μm by the signal pulses of a Rb:PPKTP doubly-resonant OPO (DRO) provided extremely broad tuning (5.8 to ~18 μm) for the non-resonated idler. In a similar set-up with the same nonlinear crystals, we studied intracavity difference-frequency generation (DFG). Both AGSe and the new monoclinic crystal BaGa4Se7 (BGSe) generated single pulse energies of ~0.7 mJ near 7 μm at an overall conversion efficiency from the 1.064 μm pump of 1.2%. The main advantage of BGSe is its damage resistivity up to the maximum pump levels applied at 100 Hz.
One of the most practical means of generating tunable mid-infrared output is by using cascaded parametric downconversion from 1 μm, where efficient and reliable high-energy nanosecond lasers are well established. The overall efficiency of the cascade relies heavily on the efficiency of the first down-conversion stage where it is beneficial to employ quasi-phase matched crystals such as periodically-poled Rb:KTiOPO4 (PPRKTP). Ultimately, the pulse energy at 2 μm and the optimum design of the first cascade will depend on the maximum intensity which could be safely applied to these crystals and therefore these schemes mandate investigation of nanosecond laser-induced damage threshold in KTiOPO4 (KTP) and Rb:KTiOPO4 (RKTP) at 1.064 μm and 2 μm. In the context of high-energy systems, where the beams are at most loosely focused, the limiting energy fluence will be determined by the laser induced damage threshold (LIDT) of the bare surface. Therefore the LIDT of the bare surface is the lowest LIDT which has to be taken into account in design of robust 2 μm parametric systems. We report surface LIDT measurements in KTP and RKTP with nanosecond pulses at 1.064 μm and 2.1 μm. We find that the reported LIDT for the bulk is far higher than that of the surface and therefore is unsuitable as a guide for the 2 μm parametric system designs. LIDT values for KTP and RKTP with nanosecond pulses at 2 μm have not been reported so far to the best of our knowledge.
Mode-locking an optically pumped semiconductor disk laser has been demonstrated using low-loss saturable absorption containing a mixture of single-walled carbon nanotubes in PMM polymer. The modulator was fabricated by a simple spin-coating technique on fused silica substrate and was operating in transmission. Stable passive fundamental modelocking was obtained at a repetition rate of 613 MHz with a pulse length of 1.23 ps. The mode-locked semiconductor disk laser in a compact geometry delivered a maximum average output power of 136 mW at 1074 nm.
We employed a 9-mm long periodically-poled KTiOPO4 (PPKTP) crystal with a domain inversion period of 37.8 μm in
an optical parametric oscillator (OPO) to generate sub-nanosecond pulses around 2.8 μm. With a 1-cm long OPO cavity
in a singly resonant configuration with double pass pumping the OPO threshold was 110 μJ at 1064 nm (1-ns pump
pulses at 1064 nm). The maximum idler output energy reached 110 μJ (quantum conversion efficiency of 32.5%). The
signal pulse duration (FWHM) was 0.72 ns and the estimated idler pulse duration was 0.76 ns. At room temperature the
signal and idler wavelengths were at 1722 and 2786 nm.
Efficient laser sources in the 3 - 5 μm wavelength range are needed for directed infrared countermeasures, but also have applications in remote-sensing, medicine and spectroscopy. We present new results on our tandem optical parametric oscillator (OPO) scheme for converting the radiation from a 1.06 μm Nd3+-laser to the mid-infrared. Multi Watt level output power in the 3-5 μm range at 20 kHz pulse repetition frequency is reported. Our setup uses a type I quasi phase-matched PPKTP crystal in a near degenerate OPO to generate 2.13 μm radiation. A volume Bragg grating resonant close to, but not exactly at the degenerate wavelength, is used as a cavity mirror to reduce the bandwidth and ensure singly resonant operation. Both signal and idler from the PPKTP OPO are used to pump a ZGP OPO generating high power radiation in the 3-5 μm region. Using this scheme for each pump photon it is possible to generate four photons for each pump photon, all in the interesting wavelength range, thus enabling high efficiency conversion.
The characterization of the coefficient of the nonlinear optical Kerr effect, the nonlinear refractive index (n2), of several femtosecond laser crystals with compositions derived by total or partial replacement of D2+ in DXO4, X = Mo or W, is presented. Tetragonal (space group I4) Na-based double tungstates NaT(WO4)2 (T = Y, La, Gd, Lu and Bi) and double molybdate NaY(MoO4)2, as well as the monoclinic (space group C2/c) Li3Gd3Ba2(MoO4)8 crystals, have been measured by the z-scan technique. All these crystals present structural local disorder, and among them the tetragonal ones exhibit significant n2 values, which should allow their efficient laser pulsed operation by Kerr-lens mode locking, especially NaBi(WO4)2, 68x10-16 cm2/W (for σ light), which is about twice than for the others. This feature is attributed to the high polarizability associated to the lone electron pair of Bi3+.
In this work we present the development of the sub-micron ferroelectric domain structuring technology in KTiOPO4. We
used these structures to demonstrate second-order interactions involving counter-propagating waves. Of special interest
is the mirrorless optical parametric oscillator, where distributed feedback between the counter-propagating signal and
idler waves obviates the need for mirrors, surface coatings or precise cavity alignment. Mirrorless optical parametric
oscillator also demonstrates some unique and useful spectral properties. These experimental demonstrations are but first
steps towards a number of tantalizing applications which, however, require even smaller ferroelectric domain
periodicities and further work on the material structuring technology.
Efficient laser sources in the 3 - 5 μm wavelength range are needed for directed infrared countermeasures, but also have
applications in remote sensing, medicine and spectroscopy. We present results and discuss the possibilities of a tandem
optical parametric oscillator (OPO) scheme for converting the radiation from a 1.06 μm Nd3+-laser to the mid-infrared.
Our setup uses type I quasi phase-matched (QPM) crystals in a near degenerate OPO to generate 2.13 μm radiation. The
QPM crystal provides higher nonlinearity and longer interaction lengths, because walk-off is avoided, compared to
conventional bulk crystals. This is an advantage especially in low pulse energy applications. To make the 2.13 μm
radiation usable for pumping a second OPO a volume Bragg grating is used as a cavity mirror to limit the bandwidth,
which in a conventional QPM OPO at degeneracy can be several hundred nanometers. The acceptance bandwidth for
efficient OPO operation of a 14 mm long ZnGeP2 (ZGP) crystal is approximately 5 nm, which makes the need for
bandwidth limiting clear. The majority of the signal energy from a periodically poled KTiOPO4 (PP KTP) OPO with a
volume Bragg grating output coupler was found to be in a single longitudinal mode, whereas the idler bandwidth was
measured to 19 GHz (FWHM). A volume Bragg grating resonant near 2124 nm was chosen so that the signal and idler
were separated by 9 nm. This OPO output has been used as a pump source for a conventional ZGP OPO demonstrating
efficient conversion and providing broadband tunable output in the mid-infrared.
A novel, compact and robust UV laser has been developed for laser induced fluorescence spectroscopy of biomolecules in the spectral region from 290 nm to 345 nm. It was based on a frequency-doubled passively Q-switched Nd:YAG laser, emitting at 532 nm, which was pumping a periodically poled KTiOPO4 optical parametric oscillator with intra-cavity sum-frequency mixing in a BBO crystal. The output was generated in two branches in the UV, 293 nm and 343 nm, with pulse widths of 1.8 ns and pulse repetition rate of 100 Hz. These wavelengths were then used for fluorescence experiments of bioagents.
A compact parametric oscillator (OPO) with intracavity sum-frequency generation (SFG) to generate 293 nm UV laser irradiation, was developed. The OPO/SFG device was pumped by a 100 Hz Nd:YAG laser (1064 nm) of own design, including subsequent second harmonic generation (SHG) in an external periodically poled KTiOPO4 (KTP) crystal. The whole system could be used to deliver more than 30 μJ laser irradiation per pulse (100 Hz) at 293 nm. The UV laser light was introduced in an optical fiber attached to a sample compartment allowing detection of fluorescence emission using a commercial spectrometer. Aqueous samples containing biomolecules (ovalbumin) or bacteria spores (Bacillus subtilis) were excited by the UV-light at 293 nm resulting in strong fluorescence emission in the range 325 - 600 nm.
Optical parametric oscillator (OPO) and sum-frequency mixing (SFM) devices are useful tools for constructing ultraviolet (UV) laser sources for fluorescence spectroscopy. Here, a compact UV-laser sources based on frequency conversion of an actively Q-switched Nd:YAG laser is presented. The second harmonic generation from a Nd:YAG laser was utilized as pump radiation for a periodically poled KTiOPO4 nanosecond optical parametric oscillator. The OPO-signal and the remaining pump were spatially mode-matched for Type I SFM in a β-barium borate (BBO) crystal and UV radiation at 293 nm could be generated. This corresponds to a conversion efficiency of 2% with respect to the 532 nm harmonic radiation. The wavelength region accessible with this UV source is useful for chemical and biological sensing. Excitation of tryptophan at 293 nm for detection of fluorescence emission in ovalbumin and transthyretin was demonstrated.
We report on the use of a compact Er-Yb:glass laser Q-switched by an AOM for seeding two-stage optical parametric amplifier realized in a single PPKTP crystal. We have generated 5 ns long pusles with a pulse energy exceeding 0.5 mJ. The parametric signal generation efficiency in the second amplification stage was 27%, while the pump depletion reached 39%. The two-stage OPA peak power gain was 30.1 dB for the seeding peak powers of 100W, while the gain reached 81 dB for the lowest seed peak powers of 0.7 mW. The OPA generated a diffraction-limited signal beam while maintaining the original spectral width of the seen.
Here we report on a noncollinear optical parametric oscillator (OPO) in periodically poled KTiOPO4. The noncollinear OPO cavity consisted of a 10 mm-long periodically poled KTiOPO4 crystal placed between two flat mirrors and pumped at 532nm by a frequency doubled Q- switched Nd:YAG. The OPO threshold for the collinear configuration was reached at the pump pulse energy of 10 (mu) J and increased monotonically when increasing the noncollinear interaction angle. The efficiency of the OPO with PPKTP reached 50 percent in the collinear configuration and about 40 percent in the noncollinear configuration. The noncollinear OPO generated two signal-idler pairs. Only one of the waves in each pair was resonated in the OPO cavity, while the complementary waves were generated at different angels as required by momentum conservation. The OPO could be tuned over a range of about 290 nm around 1064 nm wavelength by adjusting the cavity angle and the PPKTP temperature. Narrowing of the OPO spectrum was observed for small noncollinear interaction angles.
In this work we demonstrate low-threshold oscillation in the mid-IR spectral region with periodically poled KTiOPO4 (PPKTP) pumped at 1064 nm by a single-frequency Nd:YAG laser. THe compact pump laser had a diode-pumped passively Q-switched monolithic ring cavity configuration and could generate up to 70 (mu) J, 2 ns pulses. With two PPKTP crystals having ferroelectric domain inversion periods of 37.8 micrometers , the temperature tuning bands for the signal of 1720-1750 nm and 1850-1920 nm have been obtained. The lowest oscillation threshold of 8.3 (mu) J was obtained in a cavity using two mirrors reflecting 99 percent at the signal and the idler wavelengths. The maximum OPO output power of 6 mW and the pump depletion of 39 percent was achieved by driving cavity close to stability limit for the idler field. The output power was substantially increases to 36 mW by using output mirror with 90 percent reflectivity only in the signal band and optimizing pump focusing conditions. The external OPO efficiency in this case reached 21 percent.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.