We present the European development of an engineering model Laser Head for LISA. This single box includes a seed laser, an electro-optical phase modulator, a fiber amplifier and all PCBs to operate the Laser Head.
For a study of the European Space Agency ESA, Fraunhofer ILT developed and built single-frequency, linearly polarized, power-stabilized fiber amplifiers as elegant breadboard (EBB) with an output power <3 W for the future space-based gravitational wave detector LISA (Laser Interferometer Space Antenna). The fiber amplifier developed at Fraunhofer ILT in a previous phase has fulfilled most of the optical performance requirements, except the relative intensity noise (RIN) [1]. In this paper, we present our revised and optimized fiber amplifier which now, in addition to the earlier demonstrated parameters, fulfills the LISA RIN requirements. Currently, the engineering model (EM) of the chosen fiber amplifier concept is being implemented by our project partner SpaceTech GmbH. Furthermore, since the Technology Readiness Level (TRL) of the components has to be confirmed for the EM, Fraunhofer ILT conducted 1000hours operational long-term tests of the components installed in a thermal-vacuum chamber and 2-weeks nonoperational tests in a thermal cycling chamber to qualify them for space applications.
The Laser Interferometer Space Antenna (LISA), with its extreme distance measurement requirements (pm over arm lengths of 2.5 million km), imposes many stringent requirements on the laser systems used for the distance metrological measurements. In particular, frequency and power stability, sideband phase noise, and frequency reproducibility, the need of manufacturing multiple laser systems and extremely challenging lifetime (extended mission duration of 12.5 years) which demand a streamlined laser design and a particular attention to reliability and procurement strategy, all pose a significant challenge. The main requirements will be presented and analysed. Some preliminary strategies as it pertains to procurement and lot screening shall also be approached.
The current configuration and break-down of the future on-board laser systems shall be provided detailing in particular the critical interfaces.
Existing space heritage hardware (such as the LISA Pathfinder Master Oscillator) and new specialized developments are under study in both Europe and the US. European industry is developing custom Power Amplifiers to reach the end-of-life requirement of 2W (in Continuous Wave operation). In parallel alterative possible sources for a back-up Master Oscillator are also being investigated, based on off the shelf components and proprietary technologies. An overview of the development strategy shall be presented as well as some details on the specific hardware.
Within the European Space Agency (ESA) activity “Gravitational Wave Observatory Metrology Laser” we designed a laser head to fulfill the LISA laser requirements using a non-NPRO seed laser technology: an external cavity diode laser (ECDL) with resonant optical feedback from an external cavity as master oscillator for further linewidth narrowing. Furthermore, our design features a single-stage fiber amplifier with an amplification factor of about 20 dB. This paper covers the requirements on the laser source for LISA, the design and first results of performance characterization of the laser head breadboard.
For studies of the European Space Agency ESA, Fraunhofer ILT develops and builds narrowband, power-stabilized fundamental mode fiber amplifiers especially for future space-based gravitational-wave detectors, e.g. LISA, and for Earth gravity field missions. In this paper, we present the status of our ongoing work, based on a highly stable fiber amplifier designed for a Next Generation Gravity field Mission (NGGM) pre-study, towards power scaling as well as enhancement of the Technology Readiness Level (TRL). Our amplifier has already demonstrated to meet the requirements for future gravity field missions. It features a design that is free of stimulated Brillouin scattering (SBS) and a feedback loop for power stabilization.
ESA’s Gravity field and steady-state Ocean Circulation Explorer (GOCE) mission and the American-German Gravity Recovery and Climate Experiment (GRACE) mission map the Earth’s gravity field and deliver valuable data for climate research.
The French-German Methane Remote Sensing LIDAR Mission (MERLIN) planned for launch in 2020 aims to provide a global methane concentration map. The instrument is a differential absorption LIDAR (DIAL) system measuring the column-weighted dry-air mixing ratios of methane with a horizontal resolution of 50 km employing an absorption line at 1645 nm [1].
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.