GEOspace X-ray imager (GEO-X) is a small satellite mission aiming at visualization of the Earth’s magnetosphere by X-rays and revealing dynamic couplings between solar wind and the magnetosphere. In-situ spacecraft have revealed various phenomena in the magnetosphere. X-ray astronomy satellite observations recently discovered soft X-ray emissions originating from the magnetosphere. We are developing GEO-X by integrating innovative technologies of a wide field of view (FOV) X-ray instrument and a small satellite for deep space exploration. The satellite combines a Cubesat and a hybrid kick motor, which can produce a large delta v to increase the altitude of the orbit to about 30 to 60 RE from a relatively low-altitude (e.g., geo transfer orbit) piggyback launch. GEO-X carries a wide FOV (5 × 5 deg) and a good spatial resolution (10 arcmin) X-ray (0.3 to 2 keV) imaging spectrometer using a micro-machined X-ray telescope and a CMOS detector system combined with an optical blocking filter. We aim to launch the satellite around the solar maximum of solar cycle 25.
We have been developing an ultra-lightweight Wolter type-I X-ray telescope fabricated with micro electro mechanical systems (MEMS) technologies for GEO-X (GEOspace X-ray Imager) mission.
GEO-X will aim global imaging of the Earth's magnetosphere using X-rays.
The telescope is our original micropore optics which is light in weight (~5 g), compact with a short focal length (~250 mm), and has a wide field-of-view (~5 deg x 5 deg).
In this talk we show developed assembly processes to meet the requirements of the GEO-X mission and the telescope's X-ray imaging performance as an engineering model with this method.
GEO-X is a small satellite mission in near moon orbit to visualize the Earth’s magnetosphere. Since the Earth is a bright x-ray source, its x-rays have a potentially effect on the GEO-X observations. Fluxes of the unexpected x-rays, stray lights, and of the GEO-X signal can be estimated. In order to estimate the stray light effect on the GEO-X FOV, we carried out a ray-tracing simulation and calculated the signal-to-noise ratio for elongations from the Earth. The S/N ratio shows a range depending on signal flux. The signal estimated by MHD simulations is smaller than estimation based on the typical observation. When we apply the small signal flux, the S/N ratio is <10 at 7 deg elongation of the GEO-X FOV from the Earth in an orbital altitude of 60RE. In order to improve the S/N ratio, there are two ways, installing a collimator in front of the optics and adjusting the observation position to obtain a large elongation. The ray-tracing simulation reveals that the collimator with 30 µm pore width and 300 µm thickness can improve the S/N ratio. The S/N ratio with the collimator can achieve >10 when the elongation is 7 deg in the orbital altitude of 60 RE. A sample collimator was fabricated by a Si dry etching. Difference of the pore width from the designed value was occurred. Since the difference can lead to extra photon loss, a trade-off study between fabrication precision and observation position is important.
We have been developing an ultra-lightweight Wolter type-I x-ray telescope fabricated with MEMS technologies for GEO-X (geospace x-ray imager) which is an 18U CubeSat (∼20 kg) to perform soft x-ray imaging spectroscopy of the entire Earth’s magnetosphere from Earth orbit near the moon. The telescope is our original micropore optics which possesses lightness (∼15 g), a short focal length (∼250 mm), and a wide field of view (∼5 ◦ × ∼5 ◦ ). The MEMS x-ray telescope is made of 4-inch Si (111) wafers. The Si wafer is firstly processed by deep reactive ion etching such that they have numerous curvilinear micropores (20-µm width) whose sidewalls are utilized as X-ray reflective mirrors. High-temperature hydrogen annealing and chemical mechanical polishing processes are then applied to make those sidewalls smooth and flat enough to reflect X-rays. After that, the wafer is plastic-deformed into a spherical shape and Pt-coated by plasma atomic layer deposition (ALD) process to focus x-rays with high reflectivity. Finally, we assemble two optics bent with different curvatures (1000- and 333-mm radius) into the Wolter type-I telescope. Optimizing the annealing and polishing processes, we found that the optic achieves an angular resolution of ∼5.4 arcmins in HPW. This is comparable with the requirement for GEO-X (∼5 arcmins in HPD at single reflection). Our optic was also successfully Pt-coated by a plasma-enhanced ALD process to enhance x-ray reflectivity. Moreover, we fabricated an STM telescope and confirmed its environmental tolerances by conducting an acoustic test with the H-IIA rocket qualification test level and a radiation tolerance test with a 100 MeV proton beam for 30 krad equivalent to a 3-year duration in the GEO-X orbit.
We are developing a novel Bragg reflection x-ray polarimeter using hot plastic deformation of silicon wafers. A Bragg reflection polarimeter has the advantage of simple principle and large modulation factor but suffers from the disadvantage of a narrow detectable energy band and difficulty to focus an incident beam. We overcome these disadvantages by bending a silicon wafer at high temperature. The bent Bragg reflection polarimeter have a wide energy band using different angles on the wafer and enable focusing. We have succeeded in measuring x-ray polarization with this method for the first time using a sample optic made from a 4-inch silicon (100) wafer.
The source position determination method of the multiplexing lobster-eye optics (MuLE), which is a newly proposed configuration of the Lobster-Eye (LE) optics to reduce the number of focal plane detectors significantly, was developed. In the MuLE configuration, X-rays came from different field-of-views (FoVs) were focused on a single imager. To separate the multiplexed FoVs, the optics was designed so that cross-like responses of LE mirror in different FoVs had different azimuthal rotation angles. In this paper, we show the method to determine the rotation angles and verify the FoV discrimination power by using a ray tracing simulation. The configuration we assumed in the simulation was nine multiplexed FoVs projecting onto a single imager (nine-segment MuLE optics) with a 30 cm focal length and a 9×9 cm2 effective area of each LE segment. One LE segment covers 9.6°× 9.6° FoV and the total FoV of the nine-segment MuLE configuration was 9 times of that. Our method provided 100% correct FoV discrimination at the 5σ detection limit flux (35–70 mCrab) for a transient source with a duration of 100 s except for the edge of the FoV.
We propose a concept of multiplexing lobster-eye (MuLE) optics to achieve significant reductions in the number of focal plane imagers in lobster-eye (LE) wide-field x-ray monitors. In the MuLE configuration, an LE mirror is divided into several segments and the x-rays reflected on each of these segments are focused on a single image sensor in a multiplexed configuration. If each LE segment assumes a different rotation angle, the azimuthal rotation angle of a cross-like image reconstructed from a point source by the LE optics identifies the specific segment that focuses the x-rays on the imager. With a focal length of 30 cm and LE segments with areas of 10 × 10 cm2, ∼1 sr of the sky can be covered with 36 LE segments and only four imagers (with total areas of 10 × 10 cm2). A ray tracing simulation was performed to evaluate the nine-segment MuLE configuration. The simulation showed that the flux (0.5 to 2 keV) associated with the 5σ detection limit was ∼2 × 10 − 10 erg cm − 2 s − 1 (10 mCrab) for a transient with a duration of 100 s. The simulation also showed that the direction of the transient for flux in the range of 14 to 17 mCrab at 0.6 keV was determined correctly with a 99.7% confidence limit. We conclude that the MuLE configuration can become an effective on-board device for small satellites for future x-ray wide-field transient monitoring.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.