The Ka-/Q-band in the microwave region of the electromagnetic spectrum is important for astrophysical and astrochemical research, particularly in the subfield of interstellar medium (ISM). The two bands cover not only the fundamental lines of the abundant dense gas tracer CS and its isotopologues but also a vast number of transitions of relatively large, long-chain, and/or complex organic species. Here, through a Taiwan-Japan collaboration, an extended Q-band (30-50GHz) receiver is built for Nobeyama 45-m telescope. The receiver front-end was installed at Nobeyama 45-m telescope in Nov. 2021 and obtained its first light in the same month. Commissioning and science verification (CSV) of the receiver was conducted in the first half of 2022. After commissioning, this receiver will be the only one in the world providing capability to cover 3 Zeeman transitions simultaneously at 7mm wavelength installed at large single dish telescope. It will be one of the most powerful facilities to explore the magnetic fields towards the pre-protostellar cores.
Photogrammetry technique is widely used for the initial alignment of main-reflector panels of millimeter/ submillimeter-wave telescopes by analyzing a great number of photos of the reflector at the rest state taken from different angles and distances. In this study, we investigated a possibility that the photogrammetry can be applied for real-time surface measurements which is important to realize active surface controls that improve reflector surface accuracy during scientific observations. The technique is important especially for realizing larger aperture and higher frequency telescopes. We developed a simulator to investigate the accuracy of the surface measurements with photos taken with fixed cameras mounted on the stays of the sub-reflector. As a result, we found that the accuracy of surface measurement is roughly inversely proportional to square-root of the number of fixed cameras, and the calculation time roughly proportional to the product of the numbers of cameras and measurement points. For the case of Nobeyama 45-m telescope, the accuracy of 1 mm (rms) was achieved for 164 surface points by 10 cameras with a calculation time of ∼2 sec by a developed python code using a single-core Xeon processor. In order to improve the accuracy with a minimum number of cameras, more various camera positions (e.g., surrounding the vertex hole of the main reflector and surrounding the main reflector) should be investigated, and their combination should be optimized. Applying high-performing technologies such as multiprocessors and/or GPUs, faster calculation is to be considered.
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 μK-arcmin with a typical angular resolution of 0.5° at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes.
LiteBIRD has been selected as JAXA’s strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of -56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34–161 GHz), one of LiteBIRD’s onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90◦ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented.
LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD.
We present a concept of a millimeter wavefront sensor that allows real-time sensing of the surface of a groundbased millimeter/submillimeter telescope. It is becoming important for ground-based millimeter/submillimeter astronomy to make telescopes larger with keeping their surface accurate. To establish `millimetric adaptive optics (MAO)' that instantaneously corrects the wavefront degradation induced by deformation of telescope optics, our wavefront sensor based on radio interferometry measures changes in excess path lengths from characteristic positions on the primary mirror surface to the focal plane. This plays a fundamental role in planed 50-m class submillimeter telescopes such as LST and AtLAST.
We are promoting the Hybrid Installation Project in Nobeyama, Triple-band Oriented (HINOTORI), a project aiming at triple-band simultaneous single-dish and VLBI observation in the 22-, 43- and 86-GHz bands using the Nobeyama 45-m Telescope. The triple-band simultaneous observation becomes possible by developing two perforated plates and mounting them in the Nobeyama 45-m Telescope optics. One is a 22/43-GHz-band perforated plate, which transmits the higher frequency (43-GHz) band and reflects the lower frequency (22-GHz) band, and the other is a 43/86-GHz-band perforated plate, which transmits the 86-GHz band and reflects the 43-GHz band or lower. Both plates are designed to be installed in the large telescope optics with a beam diameter as large as 50 cm and insertion/reflection losses are both 0.22 dB (5%) or less in the design. The receivers used in triple-band simultaneous observation system are the H22 and H40 receivers, which are already installed in the Nobeyama 45-m Telescope, and the TZ receiver, which is a 100-GHz-band receiver including the 86-GHz band and reinstalled in the Nobeyama 45-m Telescope. A system of simultaneous observations in the 22- and 43-GHz bands of the Nobeyama 45-m Telescope with the 22/43- GHz-band perforated plate has been completed and commissioned for scientific observations. Also VLBI fringes between the Nobeyama 45-m telescope with the dual-band observation system and the VERA 20-m telescopes at 22 and 43 GHz was detected successfully.
The 1.85-m mm-submm telescope has been operated at Nobeyama Radio Observatory to observe molecular clouds in the nearby Galactic Plane based on the molecular lines of 12CO, 13CO, C18O(J = 2–1). We are planning to relocate the telescope to a site (∼2,500 m) at the Atacama Desert in Chile and to newly install a dual-band receiver for simultaneous observations of lines of CO isotopes with the transitions of J = 2–1 and J = 3–2. In order to achieve this goal, we have developed a wideband diplexer to separate radio frequency (RF) 211–275 GHz (ALMA Band 6) and 275–373 GHz (ALMA Band 7). We adopted a waveguide type FrequencySeparation Filters (FSF) as the basic concept of the wideband diplexer in 210–375 GHz. The wideband diplexer (α) has already been fabricated and measured as the prototype, and we thus obtained reasonable performance in the CO lines band. On the other hand, the measurement result indicates the return loss is relatively worse in 280–300 GHz, although it doesn’t affect the simultaneous observations of 230 GHz and 345 GHz band. We carried out 3D shape measurement with an optical microscope, and then, found that there are machining errors in the parts of the resonator in High Pass Filter. The analysis based on electromagnetic simulation reveals that the errors significantly affect return loss around cut-off frequency. In this paper, we describes the design of the waveguide diplexer, S-parameter measurement, and detailed analysis to verify the discrepancy between simulation and measurement.
We report the current status of the 1.85-m mm-submm telescope installed at the Nobeyama Radio Observatory (altitude 1400 m) and the future plan. The scientific goal is to reveal the physical/chemical properties of molecular clouds in the Galaxy by obtaining large-scale distributions of molecular gas with an angular resolution of several arcminutes. A semi-automatic observation system created mainly in Python on Linux-PCs enables effective operations. A large-scale CO J =2–1 survey of the molecular clouds (e.g., Orion-A/B, Cygnus-X/OB7, Taurus- California-Perseus complex, and Galactic Plane), and a pilot survey of emission lines from minor molecular species toward Orion clouds have been conducted so far. The telescope also is providing the opportunities for technical demonstrations of new devices and ideas. For example, the practical realizations of PLM (Path Length Modulator) and waveguide-based sideband separating filter, installation of the newly designed waveguide-based circular polarizer and OMT (Orthomode Transducer), and so on. As the next step, we are now planning to relocate the telescope to San Pedro de Atacama in Chile (altitude 2500 m), and are developing very wideband receiver covering 210–375 GHz (corresponding to Bands 6–7 of ALMA) and full-automatic observation system. The new telescope system will provide large-scale data in the spatial and frequency domain of molecular clouds of Galactic plane and Large/Small Magellanic Clouds at the southern hemisphere. The data will be precious for the comparison with those of extra-galactic ones that will be obtained with ALMA as the Bands 6/7 are the most efficient frequency bands for the surveys in extra-galaxies for ALMA.
Currently, we are performing a large-scale survey of molecular clouds toward the Galactic Plane in 12CO, 13CO, and C18O(J = 2–1) with the 1.85-m mm-submm telescope from Nobeyama Radio Observatory. In addition, we are proceeding with the preparation of a new project to observe several additional molecular lines including higher transitions of CO isotopes, such as 12CO, 13CO, and C18O(J = 2–1, 3–2) simultaneously with a wideband receiver (210–375 GHz). The optics has a Cassegrain reflector antenna with Nasmyth beam-waveguide feed and is composed of Main-reflector, Sub-reflector, ellipsoidal mirrors, and plane mirrors. New wideband optics will be required to achieve this goal. In order to accomplish the optics, we have designed a corrugated horn with a fractional bandwidth of ∼56 %, and frequency independent optics to couple the beam from the telescope onto the horn. The corrugated horn has a conical profile and the variable corrugation depth. It has been optimized by using CHAMP, our targeting return loss of better than −20 dB, cross-polarization loss of better than −25 dB, and far-field good radiation pattern. The simulation of the corrugated horn results in low return loss, low crosspolarization, and symmetric beam pattern in that frequency band. The simulated aperture efficiency of the designed receiver optics on the 1.85-m telescope is above 0.76 at all frequencies by using GRASP. Recently, we have succeeded in simultaneous observation of 12CO, 13CO, and C18O(J = 2–1 and 3–2) toward Orion KL with the optics for the first time.
We report the current status of the NASCO (NAnten2 Super CO survey as legacy) project which aims to provide all-sky CO data cube of southern hemisphere using the NANTEN2 4-m submillimeter telescope installed at the Atacama Desert through developing a new multi-beam receiver and a new telescope control system. The receiver consists of 5 beams. The four beams, located at the four corners of a square with the beam separation of 720′′, are installed with a 100 GHz band SIS receiver having 2-polarization sideband-separation filter. The other beam, located at the optical axis, is installed with a 200 GHz band SIS receiver having 2-polarization sideband-separation filter. The cooled component is modularized for each beam, and cooled mirrors are used. The IF bandwidths are 8 and 4 GHz for 100 and 200 GHz bands, respectively. Using XFFTS spectrometers with a bandwidth of 2 GHz, the lines of 12CO, 13CO, and C18O of J=1−0 or J=2−1 can be observed simultaneously for each beam. The control system is reconstructed on the ROS architecture, which is an open source framework for robot control, to enable a flexible observation mode and to handle a large amount of data. The framework is commonly used and maintained in a robotic field, and thereby reliability, flexibility, expandability, and efficiency in development are improved as compared with the system previously used. The receiver and control system are installed on the NANTEN2 telescope in December 2019, and its commissioning and science verification are on-going. We are planning to start science operation in early 2021.
Owing to recent performance improvement and lower pricing of computers, built-in computers are equipped in virtually all measurement/control hardware, and small computers (e.g., Raspberry-Pi) can be obtained inexpensively to monitor the environment and/or hardware status. Those devices are able to communicate via network. The system having flexibility adaptable with the rapidly changing trend of hardware is desired in order to provide powerful functions quickly for the telescope control. Software developed for robot operations could be used for this purpose that controlling distributed and network-linked hardware. The Robot Operating System (ROS) is an open source software platform and one of the most used frameworks for robot operations. It has a number of libraries and tools to help us create robot applications. Under this background, we are developing NECST (NEw Control System for Telescope) using ROS framework. In NECST, each atomic operation (such as device operation and arithmetic operation) is divided into a node which is an elemental object in ROS. Nodes are grouped and packaged by their functionalities for convenience. The control systems of telescope and receiver are built by combining those packages. Since there are about ∼100 nodes even in the telescope control part, we also developed utilities to manage nodes that visualizes sent/received data in real time. Currently, NECST is installed and operated mainly for receiver control and antenna control of 1.85-m mm-submm wave telescope.
LiteBIRD is a candidate for JAXA’s strategic large mission to observe the cosmic microwave background (CMB) polarization over the full sky at large angular scales. It is planned to be launched in the 2020s with an H3 launch vehicle for three years of observations at a Sun-Earth Lagrangian point (L2). The concept design has been studied by researchers from Japan, U.S., Canada and Europe during the ISAS Phase-A1. Large scale measurements of the CMB B-mode polarization are known as the best probe to detect primordial gravitational waves. The goal of LiteBIRD is to measure the tensor-to-scalar ratio (r) with precision of r < 0:001. A 3-year full sky survey will be carried out with a low frequency (34 - 161 GHz) telescope (LFT) and a high frequency (89 - 448 GHz) telescope (HFT), which achieve a sensitivity of 2.5 μK-arcmin with an angular resolution 30 arcminutes around 100 GHz. The concept design of LiteBIRD system, payload module (PLM), cryo-structure, LFT and verification plan is described in this paper.
The Greenland Telescope project has recently participated in an experiment to image the supermassive black hole shadow at the center of M87 using Very Long Baseline Interferometry technique in April of 2018. The antenna consists of the 12-m ALMA North American prototype antenna that was modified to support two auxiliary side containers and to withstand an extremely cold environment. The telescope is currently at Thule Air Base in Greenland with the long-term goal to move the telescope over the Greenland ice sheet to Summit Station. The GLT currently has a single cryostat which houses three dual polarization receivers that cover 84-96 GHz, 213-243 GHz and 271-377 GHz bands. A hydrogen maser frequency source in conjunction with high frequency synthesizers are used to generate the local oscillator references for the receivers. The intermediate frequency outputs of each receiver cover 4-8 GHz and are heterodyned to baseband for digitization within a set of ROACH-2 units then formatted for recording onto Mark-6 data recorders. A separate set of ROACH-2 units operating in parallel provides the function of auto-correlation for real-time spectral analysis. Due to the stringent instrumental stability requirements for interferometry a diagnostic test system was incorporated into the design. Tying all of the above equipment together is the fiber optic system designed to operate in a low temperature environment and scalable to accommodate a larger distance between the control module and telescope for Summit Station. A report on the progress of the above electronics instrumentation system will be provided.
A three-cartridge cryogenic receiver system is constructed for the Greenland Telescope Project. The system is equipped with a set of sub-millimeter receivers operating at 86, 230, and 345 GHz, as well as a complete set of instruments for calibration, control and monitoring. It is single pixel instrument built for VLBI observations. With the receiver system, the GLT has completed commissioning of its 12-m sub-millimeter antenna and participated in global very-long-baseline interferometry (VLBI) observations at Thule Air Base (TAB). This paper describes the receiver specification, construction, and verification.
The Greenland Telescope completed its construction, so the commissioning phase has been started since December 2017. Single-dish commissioning has started from the optical pointing which produced the first pointing model, followed by the radio pointing and focusing using the Moon for both the 86 GHz and the 230 GHz receivers. After Venus started to rise from the horizon, the focus positions has been improved for both receivers. Once we started the line pointing using the SiO(2-1) maser line and the CO(2-1) line for the 86 GHz and the 230 GHz receivers, respectively, the pointing accuracy also improved, and the final pointing accuracy turned to be around 3" - 5" for both receivers. In parallel, VLBI commissioning has been performed, with checking the frequency accuracy and the phase stability for all the components that would be used for the VLBI observations. After all the checks, we successfully joined the dress rehearsals and actual observations of the 86 GHz and 230 GHz VLBI observations, The first dress rehearsal data between GLT and ALMA were correlated, and successfully detected the first fringe, which confirmed that the GLT commissioning was successfully performed.
The Greenland Telescope Project (GLT) has successfully commissioned its 12-m sub-millimeter. In January 2018, the fringes were detected between the GLT and the Atacama Large Millimeter Array (ALMA) during a very-long-baseline interferometry (VLBI) exercise. In April 2018, the telescope participated in global VLBI science observations at Thule Air Base (TAB). The telescope has been completely rebuilt, with many new components, from the ALMA NA (North America) Prototype antenna and equipped with a new set of sub-millimeter receivers operating at 86, 230, and 345 GHz, as well as a complete set of instruments and VLBI backends. This paper describes our progress and status of the project and its plan for the coming decade.
LiteBIRD is a next generation satellite aiming for the detection of the Cosmic Microwave Background (CMB) B-mode polarization imprinted by the primordial gravitational waves generated in the era of the inflationary universe. The science goal of LiteBIRD is to measure the tensor-to-scaler ratio r with a precision of δr < 10-3♦, offering us a crucial test of the major large-single-field slow-roll inflation models. LiteBIRD is planned to conduct an all sky survey at the sun-earth second Lagrange point (L2) with an angular resolution of about 0.5 degrees to cover the multipole moment range of 2 ≤ ℓ ≤ 200. We use focal plane detector arrays consisting of 2276 superconducting detectors to measure the frequency range from 40 to 400 GHz with the sensitivity of
3.2 μK·arcmin. including the ongoing studies.
We report the development of the new 4-beam, 2-polarization, 2-sideband, 100 GHz band SIS receiver "FOREST" (FOur beam REceiver System on the 45-m Telescope) and the results from commissioning and observations on the Nobeyama 45-m Telescope operated by Nobeyama Radio Observatory, a branch of National Astronomical Observatory of Japan. FOREST aims to add new capabilities of large-area mapping and simultaneous multi-line observation at 80 { 116 GHz band to the Nobeyama 45-m Telescope, which is one of the largest millimeter radio telescopes in the world. The configuration of the four beams is a quadrate of 2 x 2 with the separation between adjacent beams of 50". Beam size of each beam is ~ 15" at 115 GHz. Receiver noise temperature is as low as that of ALMA Band 3 receivers, so that mapping speed is more than four times as high as that of the other 100 GHz band receivers on the 45-m Telescope. The IF bandwidth is 8 GHz (4 { 12 GHz) realizing simultaneous 12CO(J = 1-0), 13CO(J = 1-0), and C18O(J = 1-0) observations. Cooled components inside of cryostat are modularized per beam. IF signals from the cryostat are processed by the room temperature IF system, and then passed to spectrometers. We have installed the FOREST receiver into the Nobeyama 45-m Telescope, evaluated its performance, and made large area mapping observations. These demonstrate the excellent performance of the FOREST receiver and the Nobeyama 45-m Telescope.
We present the mission design of LiteBIRD, a next generation satellite for the study of B-mode polarization and inflation from cosmic microwave background radiation (CMB) detection. The science goal of LiteBIRD is to measure the CMB polarization with the sensitivity of δr = 0:001, and this allows testing the major single-field slow-roll inflation models experimentally. The LiteBIRD instrumental design is purely driven to achieve this goal. At the earlier stage of the mission design, several key instrumental specifications, e.g. observing band, optical system, scan strategy, and orbit, need to be defined in order to process the rest of the detailed design. We have gone through the feasibility studies for these items in order to understand the tradeoffs between the requirements from the science goal and the compatibilities with a satellite bus system. We describe the overview of LiteBIRD and discuss the tradeoffs among the choices of scientific instrumental specifications and strategies. The first round of feasibility studies will be completed by the end of year 2014 to be ready for the mission definition review and the target launch date is in early 2020s.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.