The Piccolo gated sensor features a 32x32 SPAD array of single-photon avalanche diodes (SPADs) operating in time-correlated single-photon counting (TCSPC). The chip enables event-driven readout and a maximum count rate of 220 Mcps. The sensor is based on the original Piccolo architecture, whereas the pixel was redesigned to accommodate a sub-nanosecond time gating circuitry. As a result, the pitch was increased by 3 μm to 31 μm with a slightly lower fill factor of 23.7%. The time-gating circuitry comprises active recharge to activate the gate and a fast switch to de-activate the SPAD. The sensor is equipped with 128 dynamically allocated, 50 ps time-to-digital converters (TDCs) at the bottom of the array. Four TDCs are shared among 32 SPADs in each column, where a mechanism of reallocation is used to optimize the use of TDCs and to minimize photon loss. Time gating can reduce both uncorrelated and correlated noise by reducing overall active time and by increasing relaxation time after detection, respectively. Upon acquisition of TCSPC data, the FPGA reorganizes it in histograms, which may be dynamically allocated and reduced in the number of bins to optimize memory use and data transfer from the FPGA to an external Mac/PC. The TDCs may also be calibrated to suppress differential and integral nonlinearities on-FPGA. Timestamps are stored in DDR3 and streamed out of the FPGA through PCIe with a data rate of 5.12 Gbps. Thanks to these techniques, the maximum count rate of the sensor was increased by about 3×. The time gating feature was implemented to extend dynamic range, and therefore depth, of near-infrared optical tomography (NIROT) and g(2) multi-depth time-domain diffuse correlation spectroscopy (TD-mDCS). Time gating is especially useful in NIROT and mDCS, as it helps suppress large numbers of early photons reflected back from the sample’s surface, e.g. the skull or skin. Thus, the Piccolo-gated architecture could show its suitability in these imaging modality.
In this paper, a 3D 1Gfps BSI image sensor is proposed, where 128 × 256 pixels are located in the top-tier chip and a 32 × 32 localized driver array in the bottom-tier chip. Pixels are designed with Multiple Collection Gates (MCG), which collects photons selectively with different collection gates being active at intervals of 1ns to achieve 1Gfps. For the drivers, a global PLL is designed, which consists of a ring oscillator with 6-stage current starved differential inverters, achieving a wide frequency tuning range from 40MHz to 360MHz (20ps rms jitter). The drivers are the replicas of the ring oscillator that operates within a PLL. Together with level shifters and XNOR gates, continuous 3.3V pulses are generated with desired pulse width, which is 1/12 of the PLL clock period. The driver array is activated by a START signal, which propagates through a highly balanced clock tree, to activate all the pixels at the same time with virtually negligible skew.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.