Time resolved x-ray microscopy allows researchers to investigate variation of the electronic structure of a material during chemical, structural or magnetic changes with picosecond time resolution. In this talk we will show how such a microscope can be realized using a field programming gate array in combination with a fast point detector. We will show results based on an existing setup, e.g. movies of spin waves in confined magnetic structures with a periodicity of a few ns, but also describe how this method can be extended to dynamical processes with longer observation times using state of the art FPGA technology. Time resolved measurements with high spatial resolution will be an important part of research at future x-ray sources like e.g. ALS-U.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.