Imprint lithography is an effective and well-known technique for replication of nano-scale features. Nanoimprint lithography (NIL) manufacturing equipment utilizes a patterning technology that involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. The technology faithfully reproduces patterns with a higher resolution and greater uniformity compared to those produced by photolithography equipment. Additionally, as this technology does not require an array of wide-diameter lenses and the expensive light sources necessary for advanced photolithography equipment, NIL equipment achieves a simpler, more compact design, allowing for multiple units to be clustered together for increased productivity. Previous studies have demonstrated NIL resolution better than 10nm, making the technology suitable for the printing of several generations of critical memory levels with a single mask. In addition, resist is applied only where necessary, thereby eliminating material waste. Given that there are no complicated optics in the imprint system, the reduction in the cost of the tool, when combined with simple single level processing and zero waste leads to a cost model that is very compelling for semiconductor memory applications. Any new lithographic technology to be introduced into manufacturing must deliver either a performance advantage or a cost advantage. Key technical attributes include alignment, overlay and throughput. In previous papers, overlay and throughput results have been reported on test wafers. In this work, improvements to the alignment system, together with the High Order Distortion Correction (HODC) system have enabled better distortion and overlay results. On test wafers, XMMO of 3.2nm and 2.8nm in x and y respectively was demonstrated. There is also an opportunity to further improve results by applying wafer chucks with better flatness specifications. Further advances have also been made through the application of a multi-wavelength alignment strategy. Finally, we discuss how computational methods can enhance NIL productivity and reduce the number of learning cycles
As the most aggressive features in advanced memory designs continue to shrink, so does the overlay budget. The number of layer stacks also creates unwanted topography, and the alignment robustness of lithography tools becomes much more important for on-product overly. Canon developed a through-the-mask moiré alignment system for the FPA-1200NZ2C nanoimprint lithography (NIL) system allowing high-speed measurement of several alignment marks within each imprint field and alignment compensation to be completed during the imprinting sequence. To provide increased process flexibility and overlay accuracy while maintaining high-productivity, we have developed a new low-noise and high-resolution moiré diffraction alignment system based on spatial phase interferometry. In this paper, we report on the TTM detection system used in FPA-1200NZ2C. In particular, the principle of moiré detection and the improvement of the detection method will be described. The measurement error of moiré is analyzed by a simplified model calculation and we confirmed the relationship between process change and alignment error. Results of analyses proved that selection of the wavelength are key factors for optimizing alignment accuracy. Based on these results we applied the following improvement items: 1) Dual Dipole illumination, 2) Optimization of the alignment wavelength. We evaluated the new alignment system measurement error by comparing the moiré measurement value with the measured overlay values for 24 wafers and confirmed that new TTM alignment system can reduce to the measurement error more than 40%. The data shows that our moiré measurement system can provide process robustness and can support mass-production of leading-edge memory products.
Nanoimprint lithography (NIL) techniques are known to possess replication resolution below 5nm. A specific form of imprint lithography using jetted resist has been developed for manufacturing advanced CMOS memory. Canon’s NIL process involves field-by-field inkjet deposition of a low viscosity resist fluid followed by imprinting with nano-scale precision overlay. A mask with a relief structure is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is separated from the substrate leaving a patterned resist on the substrate. The technology faithfully reproduces patterns with a higher resolution and greater uniformity compared to those produced by photolithography equipment. Additionally, as this technology does not require an array of wide-diameter lenses and the expensive light sources necessary for advanced photolithography equipment, NIL equipment achieves a simpler, more compact design, allowing for multiple units to be clustered together for increased productivity. Previous studies have demonstrated NIL resolution better than 10nm, making the technology suitable for the printing of several generations of critical memory levels with a single mask. In addition, resist is applied only where necessary, thereby eliminating material waste. Given that there are no complicated optics in the imprint system, the reduction in the cost of the tool, when combined with simple single level processing and zero waste leads to a cost model that is very compelling for semiconductor memory applications. Any new lithographic technology to be introduced into manufacturing must deliver either a performance advantage or a cost advantage. Key technical attributes include alignment, overlay and throughput. In previous papers, overlay and throughput results have been reported on test wafers. In this work, improvements to the alignment system, together with the High Order Distortion Correction (HODC) system have enabled better distortion and overlay results on both test wafers and device wafers. The linear response of the HODC system was demonstrated for multiple high order terms and on test wafers, XMMO of 2.9nm and 3.2nm in x and y respectively was achieved. Additionally an SMO of 2.2nm and 2.4nm was achieved, with an opportunity to further improve results by applying wafer chucks with better flatness specifications.
Imprint lithography is an effective and well known technique for replication of nano-scale features. Nanoimprint lithography (NIL) manufacturing equipment utilizes a patterning technology that involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. The technology faithfully reproduces patterns with a higher resolution and greater uniformity compared to those produced by photolithography equipment. Additionally, as this technology does not require an array of widediameter lenses and the expensive light sources necessary for advanced photolithography equipment, NIL equipment achieves a simpler, more compact design, allowing for multiple units to be clustered together for increased productivity. Previous studies have demonstrated NIL resolution better than 10nm, making the technology suitable for the printing of several generations of critical memory levels with a single mask. In addition, resist is applied only where necessary, thereby eliminating material waste. Given that there are no complicated optics in the imprint system, the reduction in the cost of the tool, when combined with simple single level processing and zero waste leads to a cost model that is very compelling for semiconductor memory applications. Any new lithographic technology to be introduced into manufacturing must deliver either a performance advantage or a cost advantage. Key technical attributes include alignment, overlay and throughput. In previous papers, overlay and throughput results have been reported on test wafers. In this work, improvements to the alignment system, together with the High Order Distortion Correction (HODC) system have enabled better distortion and overlay results on both test wafers and device wafers. On test wafers, XMMO of 2.9nm and 3.2nm in x and y respectively was demonstrated. SMO of 2.2nm and 2.4nm was achieved, with an opportunity to further improve results by applying wafer chucks with better flatness specifications. Comparable results were also achieved on device wafers by applying a multi-wavelength alignment strategy and a feed forward strategy to realize align signal convergence within the allocated 0.60 second budget.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.