We investigate a new preprocessing approach for MRI glioblastoma brain tumors. Based on combined denoising technique (bilateral filter) and contrast-enhancement technique (automatic contrast stretching based on image statistical information), the proposed approach offers competitive results while preserving the tumor region’s edges and original image’s brightness. In order to evaluate the proposed approach’s performance, quantitative evaluation has been realized through the Multimodal Brain Tumor Segmentation (BraTS 2015) dataset. A comparative study between the proposed method and four state-of-the art preprocessing algorithm attests that the proposed approach could yield a competitive performance for magnetic resonance brain glioblastomas tumor preprocessing. In fact, the result of this step of image preprocessing is very crucial for the efficiency of the remaining brain image processing steps: i.e., segmentation, classification, and reconstruction.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.