We investigate a new preprocessing approach for MRI glioblastoma brain tumors. Based on combined denoising technique (bilateral filter) and contrast-enhancement technique (automatic contrast stretching based on image statistical information), the proposed approach offers competitive results while preserving the tumor region’s edges and original image’s brightness. In order to evaluate the proposed approach’s performance, quantitative evaluation has been realized through the Multimodal Brain Tumor Segmentation (BraTS 2015) dataset. A comparative study between the proposed method and four state-of-the art preprocessing algorithm attests that the proposed approach could yield a competitive performance for magnetic resonance brain glioblastomas tumor preprocessing. In fact, the result of this step of image preprocessing is very crucial for the efficiency of the remaining brain image processing steps: i.e., segmentation, classification, and reconstruction. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
CITATIONS
Cited by 15 scholarly publications.
Magnetic resonance imaging
Tumors
Denoising
Image enhancement
Brain
Image filtering
Image segmentation