Automotive semiconductor products demand high reliability. The current process of performing electrical test after fab-out may not be sufficient for efficient reliability management. This paper proposes an AI solution for improving the reliability of automotive semiconductor products. The solution includes two unique concepts: fab-data augmentation (FDA) to estimate missing values using partially available measurement data during the fabrication process and real-time prediction of reliability using machine learning (ML) models. The ML model is also used to identify and rank critical process steps that impact reliability, and to predict the reliability of wafers in real time. This allows low reliability wafers to be screened out early during the chip fabrication process, improving the overall reliability of the final product.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.