Hector is a new optical integral field spectrograph (IFS) instrument built by Astralis - Australia’s Astronomical Instrumentation Consortium. Hector was commissioned on the Anglo-Australian Telescope (AAT) in 2022. In 2023 it began a 15,000-galaxy IFS survey of nearby z< 0.1 galaxies. The high fill-factor imaging fibre bundles ‘hexabundles’ of the type used on the SAMI instrument, have been improved and enlarged to cover up to 27-arcsec diameter. The aim is to reach 2 effective radii on most galaxies. Hector has a unique and novel robotic positioner that compensates for varying telecentricity over the 2-degree-field of the AAT to recoup the light loss and correct the focus across the field. Hector has 21 hexabundles over that 2-degree field feeding both the new Hector spectrograph (Spector) and existing AAOmega spectrograph. The new dual-arm Spector spectrograph has the highest spectral resolution of any large IFS nearby galaxy survey of 1.3 Angstrom. This is key to enable higher order stellar kinematics to be measured on a larger fraction of galaxies and to link those galaxies to the large-scale environments in which they form. A data reduction pipeline has been developed and is producing science-quality galaxy cubes and the first internal data release is now being used for science.
Based on the success of the SAMI integral field spectrograph (IFS) instrument on the Anglo-Australian Telescope (AAT), the capacity for large IFS nearby galaxy surveys on the AAT is being substantially expanded with a new instrument, Hector. The high fill-factor imaging fibre bundles ‘hexabundles’, of the type used on SAMI, are being improved and enlarged to cover 27-arcsec diameter. The aim is to reach 2 effective radii on most galaxies, where the galaxy rotation curve flattens and half of the angular momentum is accounted for. The boosted Hector spectral resolution of 1.3 Angstrom will enable higher order stellar kinematics to be measured on a larger fraction of galaxies than with any other IFS survey instrument. Hector will have 21 hexabundles over a 2-degree field feeding both the new Hector spectrograph and existing AAOmega spectrograph. Hector consists of new blue and red-arm spectrographs, coupled to the new high- efficiency hexabundles and a unique robotic positioner. The novel robotic positioning concept will compensate for varying telecentricity over the 2-degree-field of the AAT to recoup the light loss and correct the focus across the field. The main components are in hand, and prototypes are currently being tested ahead of commissioning in the next year. Hector will take integral field spectroscopy of 15,000 galaxies with z < 0.1 in the 4MOST WAVES-North and WAVES-South regions. The WAVES data, which will come later, will give the environment metrics necessary to relate how local and global environments influence galaxy growth through gas accretion, star formation and spins measured with Hector. The WALLABY ASKAP survey will trace HI gas across the Hector fields, which in combination with Hector will give a complete view of gas accretion and star formation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.