SIRMOS (Satellite for Infrared Multi-Object Spectroscopy) is a SMEX mission concept to map the universe in 3D over a cosmic volume of ~ 500 cubic gigaparsecs using 131 million H-alpha and [OIII] emission line galaxies (optimal for tracing cosmic large-scale structure) at 1 < z < 4. SIRMOS will probe the cosmic origin by placing unprecedented constraints on primordial non-Gaussianity, advance fundamental physics by precisely measuring the sum of neutrino masses, and definitively differentiate dark energy and modification of general relativity as the cause for the observed low-redshift cosmic acceleration. SIRMOS will measure galaxy evolution before and during the peak era of cosmic star formation over three orders of magnitude in environmental density, from cluster cores to cosmic filaments. SIRMOS has a 50 cm aperture telescope with 1.6 square degree FoV, and more than 4.4 million micromirrors on 2 digital micro-mirror devices (DMDs) to provide a programmable reflective slit mask allowing multi-slit spectroscopy at R~1300 over the wavelength range of 1.25 to 2.5 microns and a total survey area of 15,000 square degrees. The telescope is a modified Cassegrain followed by a prism mirror that splits the field toward 2 identical arms. Fore-optics reimage each subfield onto a DMD. The micro-mirrors in ON positions send the light to a spectrograph while those in OFF positions send the light to an imager which permits very precise measurements of the telescope pointing and everything not selected for spectroscopy.
ATLAS (Astrophysics Telescope for Large Area Spectroscopy) Probe is a mission concept for a NASA probe-class space mission with primary science goal the definitive study of galaxy evolution through the capture of 300,000,000 galaxy spectra up to z=7. It is made of a 1.5-m Ritchey-Chretien telescope with a field of view of solid angle 0.4 deg2. The wavelength range is at least 1 μm to 4 μm with a goal of 0.9 μm to 5 μm. Average resolution is 600 but with a possible trade-off to get 1000 at the longer wavelengths. The ATLAS Probe instrument is made of 4 identical spectrographs each using a Digital Micro-mirror Device (DMD) as a multi-object mask. It builds on the work done for the ESA SPACE and Phase-A EUCLID projects. Three-mirror fore-optics re-image each sub-field on its DMD which has 2048 x 1080 mirrors 13.6 μm wide with 2 possible tilts, one sending light to the spectrograph, the other to a light dump. The ATLAS Probe spectrographs use prisms as dispersive elements because of their higher and more uniform transmission, their larger bandwidth, and the ability to control the resolution slope with the choice of glasses. Each spectrograph has 2 cameras. While the collimator is made of 4 mirrors, each camera is made of only one mirror which reduces the total number of optics. All mirrors are aspheric but with a relatively small P-V with respect to their best fit sphere making them easily manufacturable. For imaging, a simple mirror to replace the prism is not an option because the aberrations are globally corrected by the collimator and camera together which gives large aberrations when the mirror is inserted. An achromatic grism is used instead. There are many variations of the design that permit very different packaging of the optics. ATLAS Probe will enable ground-breaking science in all areas of astrophysics. It will (1) revolutionize galaxy evolution studies by tracing the relation between galaxies and dark matter from the local group to cosmic voids and filaments, from the epoch of reionization through the peak era of galaxy assembly; (2) open a new window into the dark universe by mapping the dark matter filaments to unveil the nature of the dark Universe using 3D weak lensing with spectroscopic redshifts, and obtaining definitive measurements of dark energy and modification of gravity using cosmic large-scale structure; (3) probe the Milky Way's dust-shrouded regions, reaching the far side of our Galaxy; and (4) characterize asteroids and other objects in the outer solar systems.
MOONS is a new Multi-Object Optical and Near-infrared Spectrograph selected by ESO as a third generation
instrument for the Very Large Telescope (VLT). The grasp of the large collecting area offered by the VLT (8.2m
diameter), combined with the large multiplex and wavelength coverage (optical to near-IR: 0.8μm - 1.8μm) of MOONS
will provide the European astronomical community with a powerful, unique instrument able to pioneer a wide range of
Galactic, Extragalactic and Cosmological studies and provide crucial follow-up for major facilities such as Gaia,
VISTA, Euclid and LSST. MOONS has the observational power needed to unveil galaxy formation and evolution over
the entire history of the Universe, from stars in our Milky Way, through the redshift desert, and up to the epoch of very
first galaxies and re-ionization of the Universe at redshift z>8-9, just few million years after the Big Bang. On a
timescale of 5 years of observations, MOONS will provide high quality spectra for >3M stars in our Galaxy and the
local group, and for 1-2M galaxies at z>1 (SDSS-like survey), promising to revolutionise our understanding of the
Universe.
The baseline design consists of ~1000 fibers deployable over a field of view of ~500 square arcmin, the largest patrol
field offered by the Nasmyth focus at the VLT. The total wavelength coverage is 0.8μm-1.8μm and two resolution
modes: medium resolution and high resolution. In the medium resolution mode (R~4,000-6,000) the entire wavelength
range 0.8μm-1.8μm is observed simultaneously, while the high resolution mode covers simultaneously three selected
spectral regions: one around the CaII triplet (at R~8,000) to measure radial velocities, and two regions at R~20,000 one
in the J-band and one in the H-band, for detailed measurements of chemical abundances.
MOONS is a new conceptual design for a Multi-Object Optical and Near-infrared Spectrograph for the Very Large
Telescope (VLT), selected by ESO for a Phase A study. The baseline design consists of ~1000 fibers deployable over a
field of view of ~500 square arcmin, the largest patrol field offered by the Nasmyth focus at the VLT. The total
wavelength coverage is 0.8μm-1.8μm and two resolution modes: medium resolution and high resolution. In the medium
resolution mode (R~4,000-6,000) the entire wavelength range 0.8μm-1.8μm is observed simultaneously, while the high
resolution mode covers simultaneously three selected spectral regions: one around the CaII triplet (at R~8,000) to
measure radial velocities, and two regions at R~20,000 one in the J-band and one in the H-band, for detailed
measurements of chemical abundances.
The grasp of the 8.2m Very Large Telescope (VLT) combined with the large multiplex and wavelength coverage of
MOONS – extending into the near-IR – will provide the observational power necessary to study galaxy formation and
evolution over the entire history of the Universe, from our Milky Way, through the redshift desert and up to the epoch
of re-ionization at z<8-9. At the same time, the high spectral resolution mode will allow astronomers to study chemical
abundances of stars in our Galaxy, in particular in the highly obscured regions of the Bulge, and provide the necessary
follow-up of the Gaia mission. Such characteristics and versatility make MOONS the long-awaited workhorse near-IR
MOS for the VLT, which will perfectly complement optical spectroscopy performed by FLAMES and VIMOS.
Submillimetre astronomy is the prime technique to unveil the birth and early evolution of stars and galaxies in the local
and distant Universe. Preliminary meteorological studies and atmospheric transmission models tend to demonstrate that
Dome C might offer atmosphere conditions that open the 200-μm atmospheric windows, and could potentially be a site
for a large ground-based telescope facility. However, Antarctic climate conditions might also severely impact and
deform any telescope mirror and hardware. We present prerequisite conditions and their associate experiments for
defining a large telescope facility for submillimetre astronomy at Dome C: (1) Whether the submm/THz atmospheric
windows open from 200 μm during a large and stable fraction of time; (2) The knowledge of thermal gradient and (3)
icing formation and their impact on a telescope mirror and hardware. This paper will present preliminary results on
current experiments that measure icing, thermal gradient and sky opacity at Dome C. We finally discuss a possible
roadmap toward the deployment of a large telescope facility at Dome C.
Were massive galaxies already in place at high redshift or were they assembled to their total stellar mass only in recent epochs? Trying to quantitatively answer this question is the main goal of the K20 spectroscopic survey that we carried out at the VLT, measuring the redshift of about 500 Ks-selected galaxies. In this paper, we present the first results of this survey and discuss the first constraints on the nature, number density and clustering of EROs, the derivation of the redshift distribution of Ks<20 galaxies and the first results on the evolution of the Ks-band luminosity function. This wealth of observational results is compared to theorethical predictions of semianalytical hierarchical models. The results indicate that, up to z~1-1.5, luminosity evolution provides a satisfactory picture, whereas the strong density evolution required by the current scenarios of hierarchical merging is inconsistent with the observations. The origin of the discrepancy may reside in the incorrect treatment of the baryon assembly, the star formation modes and epoch, and the role of feedback.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.