Extending extreme ultraviolet (EUV) single exposure patterning to its limits is dependent on eliminating its stochastic defectivity. Along with developments in photoresist platforms, the patterning film stack also needs to be considered. The material immediately underneath the photoresist is expected to have significant impact on both lithographic and pattern transfer performance. By designing the resist substrate interface with high EUV absorbance, there is potential to increase the EUV quantum yield of the exposure process. Increasing the selectivity to organic layer offers the opportunity to modulate stochastic defects through etch strategies. This paper will demonstrate the patterning of various chemically amplified resists on a high-Z metal-based hardmask. The potential for dose reduction, higher etch selectivity, and defectivity improvement from a high-Z hardmask will be discussed. Deposition-trim etch techniques will be used for decreasing the transfer of stochastic defects to the underlying substrate. Sub-32nm pitch trench patterning, defectivity, and electrical yield for this patterning stack will be highlighted.
Extending extreme ultraviolet (EUV) single exposure patterning to its limits is dependent on eliminating its stochastic defectivity. Along with developments in photoresist platforms, the patterning film stack also needs to be considered. The material immediately underneath the photoresist is expected to have significant impact on both lithographic and pattern transfer performance. By designing the resist substrate interface with high EUV absorbance, there is potential to increase the EUV quantum yield of the exposure process. This paper will demonstrate the patterning of a chemically amplified resist on a high-Z metal-based hardmask. The potential for dose reduction, higher etch selectivity, and defectivity improvement from a high-Z hardmask will be discussed. Deposition-trim etch techniques will be used for decreasing the transfer of stochastic defects to the underlying substrate. Sub-32nm pitch trench patterning, defectivity, and electrical yield for this patterning stack will be highlighted.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.