The semiconductor industry has witnessed a fast progression of spectroscopic ellipsometry (SE) techniques aimed at resolving a plethora of complex device characterizations on a nanometric scale. The Mueller Matrix (MM) methodology coupled with rigorous coupled-wave analysis (RCWA) has offered an unprecedented power of investigation and analysis of diverse critical dimensions (CDs), especially when applied to gate-all-around (GAA) structures, as it helps increase the useful spectral signals of the often geometrically buried CDs. However, the sensitivity to the CDs can be often screened by other parameters, hampering the precision and accuracy of the measurement. Combining the most sensitive MM elements has therefore become a critical step of scatterometry critical dimension (SCD) metrology. Driven by the rapid developments of Machine Learning (ML) algorithms, we propose a versatile ellipsometry methodology that overcomes poor sensitivity and increases accuracy through a novel principal component analysis (PCA) method of the ML training algorithm with RCWA assistance. Furthermore, our methodology introduces a new ML training concept based on reference data statistics, rather than raw reference. Our approach has been validated with reference data and proved successful in monitoring GAA sheet-specific indent. The proposed methodology paves the way to measuring low sensitivity CDs with highly accurate, noise-reduced and robust ML-based physical SCD models for any logic and memory application.
In the current paper we are addressing three questions relevant for accuracy: 1. Which target design has the best performance and depicts the behavior of the actual device? 2. Which metrology signal characteristics could help to distinguish between the target asymmetry related overlay shift and the real process related shift? 3. How does uncompensated asymmetry of the reference layer target, generated during after-litho processes, affect the propagation of overlay error through different layers? We are presenting the correlation between simulation data based on the optical properties of the measured stack and KLA-Tencor’s Archer overlay measurements on a 28nm product through several critical layers for those accuracy aspects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.