Detection and characterization of abnormalities in clinical imaging are of utmost importance for patient diagnosis and treatment. We present a comparison of convolutional neural network (CNN) and human observer performance on a simulated lesion detection and characterization task. We apply both conventional performance metrics, including accuracy and nonconventional metrics such as lift charts to perform qualitative and quantitative comparisons of each type of observer. It is determined that the CNN generally outperforms the human observers, particularly at high noise levels. However, high noise correlation reduces the relative performance of the CNN, and human observer performance is comparable to CNN under these conditions. These findings extend into the field of diagnostic radiology, where the adoption of deep learning is starting to become widespread. Consideration of the applications for which deep learning is most effective is of critical importance to this development.
The detection and characterizations of abnormalities in clinical imaging is of the utmost importance for patient diagnosis and treatment. In this paper, we present a comparison of convolutional neural network (CNN) and human observer performance on a simulated lesion detection and characterization task. We apply both conventional performance metrics including accuracy and non-conventional metrics such as lift charts to perform qualitative and quantitative comparison of each type of observer. It is determined that the CNN generally outperforms the human observers, particularly at high noise levels. However, high noise correlation reduces the relative performance of the CNN, and human observer performance is comparable to CNN under these conditions. These findings extend into the field of diagnostic radiology, where the adoption of deep learning is starting to become widespread. The importance of considering the applications for which deep learning is most effective is of critical importance to this development.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.