The derivate of surface plasmon and optical tweezers, so-called plasmonic nano-optical tweezers (PNOT), has attracted
much research interest due to its powerful ability for immobilizing nano-objects in the nanoscale, and its potential
application in chemo/biosensing and life science. In this work, we use gold nano-rings to construct PNOT, and
demonstrate the feasibility to trap metal nanoparticles (Au-NPs) for SERS application from the numerical standpoint. 3D
finite-difference time-domain (FDTD) and the Maxwell stress tensor (MST) were used in our simulation study. We show
that the interactions of the localized surface plasmon (LSP) excitation and the plasmonic interferences of the nano-ring
arrays contribute to a narrow spectral feature around 785 nm, resulting in strong local near-field enhancement and thus
intensive field gradient forces. The trapping potential well is as high as 1.31×10-19 J under a low illuminating power density of 1.0 mW/μm2, which makes the trapping events effective enough to overcome Brownian motion of the Au-NPs. Moreover, the existence of multiple potential wells results in a very large active volume of ~106 nm3 for trapping the target particles. The trapped Au-NPs further lead to the formation of nano-gaps that offer a field enhancement of 160 times. Our proposal shows promising applications for sensing and microfluidic integrations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.