We have developed the superconductive imaging submillimeter-wave camera with nine detector elements (SISCAM-9)
for Atacama Submillimeter Telescope Experiment (ASTE). SISCAM-9 has nine SIS photon detectors as focal plane
array detector at 680 GHz. To obtain background noise limited sensitivity, we need to operate detectors under the
condition that noise is dominated by shot noise of background photo current. To realize this condition, we fabricated low
noise readout circuits using Si-JFETs. In laboratory, we evaluated performance of nine SIS photon detectors. This is the
first demonstration of 2D array of SIS photon detector for SISCAM-9. Measuring I-V characteristics, detector gap
voltages were 4.9 mV and photo currents were 3 nA. Measuring spectral responses, they had almost same center
frequency of 679 GHz and bandwidths of 77 GHz. They almost matched to 675 GHz atmospheric window from ASTE
site. Detector noise under 300 K radiation were only a few times as large as the shot noise of photo current. Detector
NEP was 1.7x10-15 W/Hz1/2,with the detector quantum efficiencies of 12%. For the first time, SIS photon detectors
worked under shot noise limited condition under 300 K background radiation. We have developed observation system,
SISCAM-9, to realize the first astronomical observations. Detectors were mounted in a cryostat that can be remotely
operated to cool the detectors to 0.46 K. We installed SISCAM-9 in the ASTE telescope and measured system
performance such as photo current and noise characteristics. For the first time, SIS photon detectors operated under the
observing condition. We succeeded in making the first astronomical observation of the moon.
High sensitivity submillimeter-wave focal plane array using SIS photon detector is being developed, which we call SISCAM, the superconductive imaging submillimeter-wave camera. In the course of the detector evaluations, we have measured performance of the SIS photon detectors under various operating conditions. Advantages of the SIS photon detectors are explained by the nature of antenna coupled quantum detectors. Their input coupling can be designed to have band-pass characteristics owing to the distributed junction design. This reduces requirements for infrared blocking filters and enhances optical efficiency. The detector performance is evaluated under background loading and they show background limited performance. Measurement at 4 K shows the SIS photon detector operates under shot noise limit of thermal leakage current and its NEP is 1x10-14 W/Hz0.5, that is better than bolometers at 4.2 K, whereas the same detector has NEP of 10-16 W/Hz0.5 at 0.3 K. Dynamic range of SIS photon detectors is estimated to be higher than 109, which surpass the dynamic range achievable with TES bolometers. Nine-element array of SIS photon detector, SISCAM-9, is developed and their performance is evaluated in a submillimeter-wave telescope. With a development of integrated electronics with GaAs-JFET charge integrating readout circuit, the SIS photon detector will be an ideal imaging array in submillimeter-wave region. Due to its large dynamic range and shot noise limited performance under various operating condition, SIS photon detectors can be used for various astronomical instrumentations as well as for other fields of terahertz technologies.
SIS photon detectors are niobium-based superconducting direct detectors for submillimeter-wave that show superior performance when compared with bolometric detectors for ground-based observations. We present the design and development of the SIS photon detectors together with optical and cryogenic components for wide field continuum observation system on Atacama Submillimeter Telescope Experiment (ASTE). Using antenna coupled distributed junctions, SIS photon detectors give wide band response in a 650-GHz atmospheric window as well as high current sensitivity, shot noise limited operation, fast response and high dynamic range. Optical noise equivalent power (NEP) was measured to be 1.6x10-16 W/Hz0.5 that is less than the background photon fluctuation limit for ground based submillimeter-wave observations. Fabrication of focal plane array with 9 detector pixels is underway to install in ASTE.
Readout electronics with Si-JFETs operating at about 100 K will be used for this array. Development of readout electronics for larger array is based on GaAs-JFETs operating at 0.3 K. For the purpose of installing 100 element array of SIS photon detectors, we have developed remotely operable low-vibration cryostat, which now cools bolometers for 350, 450, 850-µm observations down to 0.34 K. GM-type 4-K cooler and He3/He4 sorption cooler is used, which can be
remotely recycled to keep detectors at 0.34 K. Since we have large optical window for this cryostat, sapphire cryogenic window is used to block infrared radiation. The sapphire window is ante-reflection coated with SiO2 by chemical vapor deposition (CVD). The transmittance of the cryogenic window at 650 GHz is more than 95%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.