Here, an effective and economic ternary ammonia gas sensor with Au nanoparticles (NPs) hybrid polyaniline (PANI)- titanium dioxide (TiO2) nanocomposites on a flexible polyimide substrate has been successfully fabricated. In this work, high catalytic and controllably synthesized near-spherical Au NPs with size of sub-100 nm was interestingly employed, meanwhile, a facile in-situ oxidative polymerization was used to composite the Au NPs with the conventional binary PANI- TiO2. Analysis and characterization of the structures, compositions, and the gas-sensing performances of the designed ternary ammonia gas sensor were systematically explored. The results show that the Au and TiO2 NPs were evenly distributed among the PANI fibrous networks, favoring the construction of the practical gas sensors. Besides, the gas sensor with 1 wt% of Au and 20 mol% of TiO2 dispersed into PANI showed an excellent gas-sensing performance: the response and recovery rates of the sensors respectively reach 32 s and 111 s to 100 ppm concentration of ammonia at room temperature, and the response value approach to 123%, which is approximately 1.9 times and 1.2 times higher than the pure PANI and PANI-TiO2. Furthermore, the designed gas sensors exhibited significant stability, selectivity and response-concentration linearity (correlation coefficients R2=0.9984). It is expected that our concerned and designed ternary gas sensors may find great potential applications such as in flexible wearable devices and the medical health monitors.
Here, an effective and economic ternary ammonia gas sensor with Au nanoparticles (NPs) hybrid polyaniline (PANI)- titanium dioxide (TiO2) nanocomposites on a flexible polyimide substrate has been successfully fabricated. In this work, high catalytic and controllably synthesized near-spherical Au NPs with size of sub-100 nm was interestingly employed, meanwhile, a facile in-situ oxidative polymerization was used to composite the Au NPs with the conventional binary PANI- TiO2. Analysis and characterization of the structures, compositions, and the gas-sensing performances of the designed ternary ammonia gas sensor were systematically explored. The results show that the Au and TiO2 NPs were evenly distributed among the PANI fibrous networks, favoring the construction of the practical gas sensors. Besides, the gas sensor with 1 wt% of Au and 20 mol% of TiO2 dispersed into PANI showed an excellent gas-sensing performance: the response and recovery rates of the sensors respectively reach 32 s and 111 s to 100 ppm concentration of ammonia at room temperature, and the response value approach to 123%, which is approximately 1.9 times and 1.2 times higher than the pure PANI and PANI-TiO2. Furthermore, the designed gas sensors exhibited significant stability, selectivity and response-concentration linearity (correlation coefficients R2=0.9984). It is expected that our concerned and designed ternary gas sensors may find great potential applications such as in flexible wearable devices and the medical health monitors.
Active optics technology eases the requirements for the fabrication and stability of mirrors. Optical replication techniques make it possible to fabricate a mirror of optical quality rapidly and inexpensively. Combining the advantages of these two methods, we designed a lightweight unimorph mirror with a diameter of 160 mm based on an Al-SiC passive layer. A finite element model was established to predict the performance of this mirror and to optimize relevant parameters. A spherical prototype mirror was fabricated and tested to measure its shape-correction capability, thermal stability, and surface roughness; this prototype has been used in an innovation project on lightweight active mirrors from the Chinese Academy of Sciences.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.