KEYWORDS: Solar radiation, Ultraviolet radiation, Ozone, Atmospheric modeling, Remote sensing, Aerospace engineering, Solar processes, Stratosphere, Data modeling, Solar radiation models
Aerospace activity becomes research hotspot for worldwide aviation big countries. Solar radiation study is the prerequisite for aerospace activity to carry out, but lack of observation in near space layer becomes the barrier. Based on reanalysis data, input key parameters are determined and simulation experiments are tried separately to simulate downward solar radiation and ultraviolet radiation transfer process of near space in China area. Results show that atmospheric influence on the solar radiation and ultraviolet radiation transfer process has regional characteristic. As key factors such as ozone are affected by atmospheric action both on its density, horizontal and vertical distribution, meteorological data of stratosphere needs to been considered and near space in China area is divided by its activity feature. Simulated results show that solar and ultraviolet radiation is time, latitude and ozone density-variant and has complicated variation characteristics.
Because of the special geographical location and meteorology conditions, Beijing is a dust-prone city for a long history especially in the spring season. But these years, the most common air pollution in Beijing is haze which is mainly composed of fine particles. The dust is transported from north (Inner Mongolia province and Mongolia country), and the haze is transported from south (Hebei, Shandong and other provinces). Generally, the severities of dust and haze are opposite for the different weather causes. On March 28, 2015, the spring coming earlier for the relatively high temperature, a severe dust weather process happened suddenly in the long-term hazy days. In this dust process, the PM10 concentration was more than 1000μg/m3; the visibility was no more than 3km; and the aerosol optical depth was more than 2, which reached a severe pollution level. We used ground-based remote sensing instruments to observing the heavy dust episode. The data of two conditions were analyzed optical and microphysical parameters contrastively including the Aerosol Optical Depth, Single Scattering Albedo, Size distribution, Complex refractive index, Fine-mode Fraction. The vertical distribution characteristics were also analyzed by the lidar measurements. The results show that big differences between the dust and haze aerosol properties. But we found that fine mode particle pollution was assignable in the dust pollution weather in 2015 spring in Beijing. Our preliminary inference is that this dust episode was not only caused by transportation, but also contributed by the local raise dust.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.