We developed a new type of optical lens device that can change its curvature like crystalline lens in human eye. The
curvature changing capability of the lens allows for a tremendous tuning range in its optical power and subsequently
enables miniaturized imaging systems that can perform autofocus, optical zoom, and other advanced functions. In this
paper, we study the physical properties of bio-inspired fluidic lenses and demonstrate the optical functionality through
miniaturized optical systems constructed with such lenses. We report an auto-focusing optical system that can turn from
a camera to a microscope, and demonstrate more than 4X optical zoom with a very short total track length. Finally, we
demonstrate the benefits of fluidic lens zoom camera through minimally invasive gallbladder removal surgery.
Miniaturized imaging systems have become ubiquitous as they are found in an ever-increasing number of devices, such
as cellular phones, personal digital assistants, and web cameras. Until now, the design and fabrication methodology of
such systems have not been significantly different from conventional cameras. The only established method to achieve
focusing is by varying the lens distance. On the other hand, the variable-shape crystalline lens found in animal eyes
offers inspiration for a more natural way of achieving an optical system with high functionality.
Learning from the working concepts of the optics in the animal kingdom, we developed bio-inspired fluidic lenses for a
miniature universal imager with auto-focusing, macro, and super-macro capabilities. Because of the enormous dynamic
range of fluidic lenses, the miniature camera can even function as a microscope. To compensate for the image quality
difference between the central vision and peripheral vision and the shape difference between a solid-state image sensor
and a curved retina, we adopted a hybrid design consisting of fluidic lenses for tunability and fixed lenses for aberration
and color dispersion correction. A design of the world's smallest surgical camera with 3X optical zoom capabilities is
also demonstrated using the approach of hybrid lenses.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.