KEYWORDS: Mirrors, Education and training, Beam path, Relays, Beam diameter, Telescopes, Optical components, Design, Beam combiners, Signal to noise ratio
The Magdalena Ridge Observatory Interferometer has been designed to deliver an unprecedented capability for model-independent imaging of faint astronomical targets. As a consequence, its design methodology has focused on optimizing the interferometric sensitivity of all of its opto-mechanical subsystems. We report here on initial testing of one of the MROI beam-trains, outlining the performance metrics utilized to characterize the elements of the optical train from the Unit Telescopes through to the MROI beam combiner tables, the tests performed on each subsystem, and how our results compare to the design error budget for the MROI. The impact of the tests on the initial sensitivity limit of the MROI are discussed.
The Magdalena Ridge Observatory Interferometer is an ambitious project to build a 10 telescope long-baseline optical/near-infrared in the mountains about a one-hour drive outside of Socorro, NM. The project is being led by New Mexico Institute of Mining and Technology and being built in cooperation with our primary collaborators at the University of Cambridge. We are currently funded via a cooperative agreement with the Air Force Research Lab in Albuquerque, NM to demonstrate imaging capabilities on geosynchronous objects. We have recently installed the second full beamline for the interferometer system and are working our way towards first fringes on an ~8m baseline later this year. In this manuscript, we report on the status of each of the subsystems, the installation progress and challenges to date, and on the ramp-up to measurements of first fringes. We also report on plans for early science and offer public shared-risk access with the facility in the near future.
The Magdalena Ridge Observatory Interferometer has been conceived to be the most ambitious optical/near-infrared long-baseline imaging interferometer in the world today. We anticipate receiving the second telescope mount and enclosure and associated beamline infrastructure to enable us to attempt first fringes measurements early in 2023. Having reached this important milestone, we anticipate receiving the third copy of all beamline components about one year later and attempting closure phase measurements thereafter. We will present a status update and plans under the new Cooperative Agreement with AFRL for the next phases of the project.
The Magdalena Ridge Observatory Interferometer (MROI) is designed to operate 10 1.4m telescopes simultaneously, with baselines ranging from 7.8-347 m and limiting infrared fringe-tracking magnitudes of 14 – it is arguably the most ambitious optical/infrared imaging interferometer under construction today. In this paper we had intended to present an update of activities since the 2018 SPIE meeting as we approached a demonstration of first fringes with the facility originally anticipated for the fall of 2020. However, due to the global pandemic and a loss of funding for our project via AFRL, we have been unable to make the progress we intended. In this paper, we present results up through March, 2020 and a brief discussion of the path forward for the facility.
The Magdalena Ridge Observatory Interferometer (MROI) has been under development for almost two decades. Initial funding for the facility started before the year 2000 under the Army and then Navy, and continues today through the Air Force Research Laboratory. With a projected total cost of substantially less than $200M, it represents the least expensive way to produce sub-milliarcsecond optical/near-infrared images that the astronomical community could invest in during the modern era, as compared, for instance, to extremely large telescopes or space interferometers. The MROI, when completed, will be comprised of 10 x1.4m diameter telescopes distributed on a Y-shaped array such that it will have access to spatial scales ranging from about 40 milliarcseconds down to less than 0.5 milliarcseconds. While this type of resolution is not unprecedented in the astronomical community, the ability to track fringes on and produce images of complex targets approximately 5 magnitudes fainter than is done today represents a substantial step forward. All this will be accomplished using a variety of approaches detailed in several papers from our team over the years. Together, these two factors, multiple telescopes deployed over very long-baselines coupled with fainter limiting magnitudes, will allow MROI to conduct science on a wide range and statistically meaningful samples of targets. These include pulsating and rapidly rotating stars, mass-loss via accretion and mass-transfer in interacting systems, and the highly-active environments surrounding black holes at the centers of more than 100 external galaxies. This represents a subsample of what is sure to be a tremendous and serendipitous list of science cases as we move ahead into the era of new space telescopes and synoptic surveys. Additional investigations into imaging man-made objects will be undertaken, which are of particular interest to the defense and space-industry communities as more human endeavors are moved into the space environment.
In 2016 the first MROI telescope was delivered and deployed at Magdalena Ridge in the maintenance facility. Having undergone initial check-out and fitting the system with optics and a fast tip-tilt system, we eagerly anticipate installing the telescope enclosure in 2018. The telescope and enclosure will be integrated at the facility and moved to the center of the interferometric array by late summer of 2018 with a demonstration of the performance of an entire beamline from telescope to beam combiner table shortly thereafter. At this point, deploying two more telescopes and demonstrating fringe-tracking, bootstrapping and limiting magnitudes for the facility will prove the full promise of MROI. A complete status update of all subsystems follows in the paper, as well as discussions of potential collaborative initiatives.
The Magdalena Ridge Observatory Interferometer (MROI) was the most ambitious infrared interferometric facility conceived of in 2003 when funding began. Today, despite having suffered some financial short-falls, it is still one of the most ambitious interferometric imaging facilities ever designed. With an innovative approach to attaining the original goal of fringe tracking to H = 14th magnitude via completely redesigned mobile telescopes, and a unique approach to the beam train and delay lines, the MROI will be able to image faint and complex objects with milliarcsecond resolutions for a fraction of the cost of giant telescopes or space-based facilities. The design goals of MROI have been optimized for studying stellar astrophysical processes such as mass loss and mass transfer, the formation and evolution of YSOs and their disks, and the environs of nearby AGN.
The global needs for Space Situational Awareness (SSA) have moved to the forefront in many communities as Space becomes a more integral part of a national security portfolio. These needs drive imaging capabilities ultimately to a few tens of centimeter resolution at geosynchronous orbits. Any array capable of producing images on faint and complex geosynchronous objects in just a few hours will be outstanding not only as an astrophysical tool, but also for these types of SSA missions. With the recent infusion of new funding from the Air Force Research Lab (AFRL) in Albuquerque, NM, MROI will be able to attain first light, first fringes, and demonstrate bootstrapping with three telescopes by 2020.
MROI’s current status along with a sketch of our activities over the coming 5 years will be presented, as well as clear opportunities to collaborate on various aspects of the facility as it comes online. Further funding is actively being sought to accelerate the capability of the array for interferometric imaging on a short time-scale so as to achieve the original goals of this ambitious facility
The Magdalena Ridge Observatory Interferometer has been designed to be a 10 × 1.4 m aperture long-baseline optical/near-infrared interferometer in an equilateral "Y" configuration, and is being deployed west of Socorro, NM on the Magdalena Ridge. Unfortunately, first light for the facility has been delayed due to the current difficult funding regime, but during the past two years we have made substantial progress on many of the key subsystems for the array. The design of all these subsystems is largely complete, and laboratory assembly and testing, and the installation and site acceptance testing of key components on the Ridge are now underway. This paper serves as an overview and update on the facility's present status and changes since 2012, and the plans for future activities and eventual operations of the facilities.
The Magdalena Ridge Observatory Interferometer has been designed to be a 10 x 1.4 m aperture long-baseline
optical/near-infrared interferometer in an equilateral "Y" configuration, and is being deployed west of Socorro, NM on
the Magdalena Ridge. Unfortunately, first light for the facility has been delayed due to the current difficult funding
regime, but during the past two years we have made substantial progress on many of the key subsystems for the array.
The design of all these subsystems is largely complete, and laboratory assembly and testing, and the installation of many of its components on the Ridge are now underway. This paper serves as an overview and update on the facility's present status, and the plans for future funding and eventual operations of the facilities.
KEYWORDS: Telescopes, Satellites, Interferometers, Satellite imaging, Interferometry, Solar cells, Space telescopes, K band, Signal to noise ratio, Image restoration
Interferometry provides the only practicable way to image meter-scale structure in geosynchronous satellites. This
capability represents a unique commercial opportunity for astronomical interferometry, but to date no interferometer has
been able to make an image of such a satellite. We discuss the challenges of imaging these objects and present results of
sensitivity calculations and imaging simulations which show that the Magdalena Ridge Observatory Interferometer is
likely to be well-suited to this application. Our preliminary results suggest that a significant proportion of GEO targets
may be accessible and that it may be possible to routinely extract key satellite diagnostics with an imaging capability that would be able to distinguish, for example, 70 cm features on a 5-meter satellite bus and payload, 30 cm features on a 2-meter satellite bus or similarly sized structure, as well as precise quantitative information on much larger structures such as 10 m long solar panels. Optimised observation and data reduction strategies are likely to allow these limits to be improved in due course.
The Magdalena Ridge Observatory Interferometer is a 10 x 1.4 meter aperture long baseline optical and near-infrared
interferometer being built at 3,200 meters altitude on Magdalena Ridge, west of Socorro, NM. The interferometer layout
is an equilateral "Y" configuration to complement our key science mission, which is centered on imaging faint and
complex astrophysical targets. This paper serves as an overview and update on the status of the observatory and our
progress towards first light and first fringes in 2012.
The Magdalena Ridge Observatory Interferometer is a 10-element 1.4 meter aperture optical and near-infrared
interferometer being built at 3,200 meters altitude on Magdalena Ridge, west of Socorro, NM. The
interferometer layout is an equilateral "Y" configuration to complement our key science mission, which is
centered around imaging faint and complex astrophysical targets. This paper serves as an overview and
update on the status of the observatory and our progress towards first light and first fringes in the next few
years.
The Magdalena Ridge Observatory Interferometer (MROI) is a ten element optical and near-infrared imaging interferometer being built in the Magdalena mountains west of Socorro, NM at an altitude of 3230 m. The interferometer is being designed and built by a collaboration which includes the New Mexico Institute of Mining and Technology (NMT) as the prime contractor and center for the technical team, and the University of Cambridge, Physics Department at the Cavendish Laboratory, which participates in the design and executes work packages under contract with NMT. This manuscript serves as a status update on MROI, and will present progress and milestones toward the observatory's first fringes in 2008.
A new type of optical chemical sensor recently developed in our lab has been demonstrated for highly sensitive, in-situ detection of explosives. The sensor is comprised of a dense silica thin film grown on the straight-cut endface of a standard, 125μm telecommunication optical fiber. Silicalite is an all-silica MFI-type zeolite with an effective pore size of 0.55nm. MFI zeolite is highly hydrophobic and selectively adsorbs organics of appropriate molecular size. The sensor device operates through measuring the optical refractive index or optical thickness of the coated zeolite film which changes in response to the adsorption of molecular species in its crystalline structure. In this work, the sensor exhibited different responses to simulants including pxylene, o-xylene, and triisopropylbenzene and trinitrotoluene (TNT) trace vapor in helium carrier gas.
The Magdalena Ridge Observatory Interferometer will be the
first facility-class optical interferometer optimized strictly for an
imaging science mission. The array in its final form is envisaged to
comprise ten 1.4 m aperture movable telescopes in a Y configuration,
baselines extending from 8 to 400 meters, delay lines capable of
tracking well-placed sources for 6 continuous hours, fringe-tracking
in the near-infrared , and undertake science observations at both
near-infrared and optical wavelengths. The science reference mission
includes studies of young stellar objects, a full range of stellar
astrophysics, and imaging studies of the nearest and brightest 100
active galactic nuclei. We will be staffing up to our full complement
of personnel in New Mexico over the next year. Our goal for first
fringes on the first baseline is 2007.
In the United States an Environmental Impact Statement can easily take two years and cost more than one million dollars. This paper summarizes the experience gained from carrying out the Environmental Impact Statement of the Magdalena Ridge Observatory. Methods are given to avoid difficulties and manage time, cost, and communication for a successful conclusion.
The Magdalena Ridge Observatory project has received first- year funding to complete planning and environmental work. The observatory will have three 2.4-meter telescopes that can be used individually for conventional single-telescope projects or linked to do interferometry. The layout of the observatory will allow fixed east-west baselines as long as 75 meters and may include one telescope that can be moved north-south 100 meters or more to improve coverage in the u- v plane.
KEYWORDS: Explosives, Security technologies, Information security, Computer security, Analytical research, Defense and security, Telecommunications, Safety, Systems modeling, Computing systems
The Southwest Surety Institute includes Arizona State University (ASU), Louisiana State University (LSU), New Mexico Institute of Mining and Technology (NM Tech), New Mexico State University (NMSU), and Sandia National Laboratories (SNL). The universities currently offer a full spectrum of post-secondary programs in security system design and evaluation, including an undergraduate minor, a graduate program, and continuing education programs. The programs are based on the methodology developed at Sandia National Laboratories over the past 25 years to protect critical nuclear assets. The programs combine basic concepts and principles from business, criminal justice, and technology to create an integrated performance-based approach to security system design and analysis. Existing university capabilities in criminal justice (NMSU), explosives testing and technology (NM Tech and LSU), and engineering technology (ASU) are leveraged to provide unique science-based programs that will emphasize the use of performance measures and computer analysis tools to prove the effectiveness of proposed systems in the design phase. Facility managers may then balance increased protection against the cost of implementation and risk mitigation, thereby enabling effective business decisions. Applications expected to benefit from these programs include corrections, law enforcement, counter-terrorism, critical infrastructure protection, financial and medical care fraud, industrial security, and border security.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.