Gold-coated silicon nitride mirrors designed for two orthogonal rotations were fabricated. The devices were patterned out of nitride using surface micromachining techniques, and then released by a sacrificial oxide etch and bulk etching the silicon substrate. Vertical nitride ribs were used to stiffen the members and reduce the curvature of the mirrored surfaces due to internal stress in the nitride and the metal layer. This was accomplished by initially etching the silicon substrate to form a mold that was filled with nitride to create a stiffening lattice-work to support the mirrored section. Mirror diameters ranging from 100 mm to 500 mm have been fabricated, with electrostatic actuation used to achieve over four degrees of tilt for each axis.
Experiments were carried out to quantify the contribution of backscattered light and orthogonal polarization to the bias stability of a tactical-grade resonant fiber-optic gyro. The data were found to agree with theory to within 25 percent. It was found that suppressed carrier phase modulation of the light for each input was effective in reducing the backscatter bias error by shifting the modulation frequencies for the counterpropagating signals. The polarization errors could be reduced by adding fiber polarizers at the ring outputs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.