Here we present the design of a high-resolution, high-magnification microscope using LEGO® bricks and easily-available lenses. With the provided workflow and suggested experiments, we show that 9-to-13-year old students significantly increased their understanding of microscopy.
Confocal and multiphoton microscopy are essential tools in modern life sciences. They allow fast and highly resolved imaging of a steadily growing number of fluorescent markers, ranging from fluorescent proteins to quantum dots and other fluorophores, used for the localization of molecules and the quantitative detection of molecular properties within living cells and organisms. Up to now, only one physical limitation seemed to be unavoidable. Both confocal and multiphoton microscopy rely on lasers as excitation sources, and their monochromatic radiation allows only a limited number of simultaneously usable dyes, which depends on the specific number of laser lines available in the used microscope. We have overcome this limitation by successfully replacing all excitation lasers in a standard confocal microscope with pulsed white light ranging from 430 to 1300 nm generated in a tapered silica fiber. With this easily reproducible method, simultaneous confocal and multiphoton microscopy was demonstrated. By developing a coherent and intense laser source with spectral width comparable to a mercury lamp, we provide the flexibility to excite any desired fluorophore combination.
Understanding and controlling neuronal growth are basic objectives in neuroscience, biology, biophysics, and biomedicine, and are vital for the formation of neural circuits in vitro, as well as for nerve regeneration in vivo. All molecular stimuli for neuronal growth eventually address the polymeric cytoskeleton, which advances a neurite's leading edge also known as the growth cone. We have shown that optical forces of a highly focused infrared laser beam influence the motility of a growth cone by biasing the polymerization-driven intracellular machinery. In actively extending growth cones, a laser spot placed at specific areas of the neurite's leading edge affects the growth speed, the direction taken by a growth cone, and the splitting of a growth cone. This novel optical tool manipulates a natural biological process, the cytoskeleton driven morphological changes in growth cones, with potential applications in the formation of neuronal networks and in understanding growth cone motility. The current apparatus combines optical tweezers, phase contrast and fluorescence imaging, and real-time shape detection. Automated and dynamically readjusted irradiation of the growth cone is used to examine and to influence structural and morphological changes of neuronal growth.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.