The x-ray polarization of compact objects in x-ray binaries allows us to understand the complex spacetimes surrounding these sources. XL-Calibur is a state-of-the-art, balloon-borne telescope that measures the linear polarization of stellar-mass black holes, neutron stars, and nebulae in the 15-80 keV energy band. The selected energy range allows for observing coronal emission from black holes while also enabling us to narrow down on emission models from neutron stars, pulsars, and magnetars. Early in 2024, XL-Calibur will be launched from Kiruna, Sweden for approximately 10 days to observe Cyg X-1 and Cyg X-3, or other sources chosen based on flux levels at the time of flight. Observations might be coordinated with the recently launched Imaging x-ray Polarimetry Explorer mission which measures polarization in the complimentary 2-8 keV band. Combined XL-Calibur and IXPE observations will yield information on both soft and hard x-rays allowing us to decompose the total emission from black holes into thermal disk and coronal. We discuss the characterization of the XL-Calibur CdZnTe detectors, the telescope mirror and truss setup, and preliminary results from our most recent flight.
We have developed a novel x-ray interferometer, multi-image x-ray interferometer module (MIXIM), comprised of a fine aperture mask and an x-ray detector. The angular resolution of this system can be improved with an increase of the distance between two components or a decrease of the aperture size. Although MIXIM has already achieved an angular resolution of less than 0.1” by applying the Talbot effect with a periodic multi-pinhole mask, there remains the issue that its low opening fraction of 1.3% decreases the effective area of the imaging system. Therefore, we newly introduced periodic coded aperture masks which have opening fractions of about 50% instead of the multi-pinhole mask. Conducting an experiment with a 12.4 keV parallel x-ray beam, we successfully demonstrated that the periodic coded aperture could form the self-image, and obtained the x-ray source profile with sub-arcsecond angular resolution by deciphering the coded pattern. The effective area increases about 25 times compared with the multi-pinhole mask by the introduction of the periodic coded aperture masks, which indicates that this novel method can be effective for addressing the problem.
XL-Calibur is a balloon-borne mission for hard x-ray polarimetry. The first launch is currently scheduled from Sweden in summer 2022. Japanese collaborators provide a hard x-ray telescope to the mission. The telescope’s design is identical to the Hard X-ray Telescope (HXT, conically-approximated Wolter-I optics) on board ASTROH with the same focal length of 12 m and the aperture of 45 cm, which can focus x-rays up to 80 keV. The telescope is divided into three segments in the circumferential direction, and confocal 213 grazing-incidence mirrors are precisely placed in the primary and secondary sections of each segment. The surfaces of the mirrors are coated with Pt/C depth-graded multilayer to reflect hard x-rays efficiently by the Bragg reflection. To achieve the best focus, optical adjustment of all of the segments was performed at the SPring-8/BL20B2 synchrotron radiation facility during 2020. A final performance evaluation was conducted in June 2021 and the experiment yields the effective area of 175 cm2 and 73 cm2 at 30 keV and 50 keV, respectively, with its half-power diameter of the point spread function as 2.1 arcmin. The field of view, defined as the full width of the half-maximum of the vignetting curve, is 5.9 arcmin.
This paper introduces a second-generation balloon-borne hard X-ray polarimetry mission, XL-Calibur. X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as pulsars and binary black hole systems. The XL-Calibur contains a grazing incidence X-ray telescope with a focal plane detector unit that is sensitive to linear polarization. The telescope is very similar in design to the ASTRO-H HXT telescopes that has the world’s largest effective area above ~10 keV. The detector unit combines a low atomic number Compton scatterer with a CdZnTe detector assembly to measure the polarization making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. It also contains a CdZnTe imager at the bottom. The detector assembly is surrounded by the improved anti-coincidence shielding, giving a better sensitivity. The pointing system with arcsecond accuracy will be achieved.
We intoduce our novel method of super high resolution astronomical X-ray imaging, Multi Image X-ray Interferometer Method, Modules, Missions (MIXIM). In series of experiments on the ground we not only verified the concept of MIXIM but also realized 2D imaging with angular resolution better than 0. ′′1. Employment of small pixel size CMOS sensor was the key to this achievement. Scalability is also an important feature of MIXIM., and various mission format is available. We show some examples from a very small satellite for sub arcsecond resolution to a formation flight with a millions km separation to gain µas resolution. MIXIM is different from X-ray mirrors in various points, for example, it does not have a collecting power. Considering the limitations and advantages of MIXIM, we should choose bright apparently point-like sources as targets. Nearby AGNs are primary ones, and the MIXIM scope just corresponds to spatial scales which have not yet resolved in X-rays.
CFRP is a composite material composed of carbon fiber and resin. CFRP is commonly applied to the aerospace industry which requires lightweight and intensity. Thanks to superior formability of CFRP, we can form shape of Wolter-1 optics, which consists of paraboloid and hyperboloid, to a monolithic substrate. Since the surface roughness of a CFRP substrate is a few µm, we have to make the smooth surface for reflecting X-rays on the CFRP substrate. We have developed a new method of shaping the reflective surface instead of the replica method used in lightweight X-ray mirrors such as Astro-H. In the new method, the reflective surface is formed by pasting thin sheet-glasses with 100 µm thick onto the CFRP substrate. The thin sheet-glass has a surface roughness about 0.4 nm as measured by Zygo. We fabricated a CFRP mirror pasting thin sheet-glasses, and then coated tungsten on the mirror in June 2020. The figure error (s) of the CFRP mirror was achieved to be about 1-2 μm by stacking the CFRP mirror on the housing module. X-ray imaging quality of the CFRP mirror was measured at Spring-8 in July 2020. The half-power diameter of the CFRP mirror was estimated to be about 150 arcsec, which was nearly equal to the prediction from a distribution of the slope error deduced from the surface profile. We describe a future plan to improve the image quality of the CFRP mirror.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.