The fifth Sloan Digital Sky Survey Local Volume Mapper (LVM) is a wide-field integral field unit survey that uses an array of four 160 mm fixed telescopes with siderostats to minimize the number of moving parts. An individual telescope observes the science or calibration field independently and is synchronized with the science exposure. We developed the LVM Acquisition and Guiding Package (LVMAGP)-optimized telescope control software program for LVM observations, which can simultaneously control four focusers, three K-mirrors, one fiber selector, four mounts (siderostats), and seven guide cameras. This software is built on a hierarchical architecture and the SDSS framework and provides three key sequences: autofocus, field acquisition, and autoguide. We designed and fabricated a proto-model siderostat to test the telescope pointing model and LVMAGP software. The mirrors of the proto-model were designed as an isogrid open-back type, which reduced the weight by 46% and enabled reaching thermal equilibrium quickly. In addition, deflection due to bolting torque, self-gravity, and thermal deformation was simulated, and the maximum scatter of the pointing model induced by the tilt of optomechanics was predicted to be 4′.4, which can be compensated for by the field acquisition sequence. We performed a real sky test of LVMAGP with the proto-model siderostat and obtained field acquisition and autoguide accuracies of 0″.38 and 1″.5, respectively. It met all requirements except for the autoguide specification, which will be resolved by more precise alignment among the hardware components at Las Campanas Observatory.
The Maunakea Spectroscopic Explorer (MSE) project will provide multi-object spectroscopy in the optical and near-infrared bands using an 11.25-m aperture telescope, repurposing the original Canada–France–Hawaii Telescope site. MSE will observe 4332 objects per single exposure with a field of view of 1.5 square degrees, utilizing two spectrographs with low-moderate (R∼3000, 6000) and high (R≈30,000) spectral resolution. In general, an exposure time calculator (ETC) is used to estimate the performance of an observing system by calculating the signal- to-noise ratio (S/N) and exposure time. We present the design of the MSE ETC, which has four calculation modes (S/N, exposure time, S/N trend with wavelength, and S/N trend with magnitude) and incorporates the MSE system requirements as specified in the conceptual design. The MSE ETC currently allows for user-defined inputs of the target AB magnitude, water vapor, air mass, and sky brightness AB magnitude (additional user inputs can be provided depending on the computational mode). The ETC is built using Python 3.7 and features a graphical user interface that allows for cross-platform use. The development process of the ETC software follows an Agile methodology and utilizes the unified modeling language diagrams to visualize the software architecture. We also describe the testing and verification of the MSE ETC.
KEYWORDS: Spectrographs, Control software, Software development, Charge-coupled devices, Camera shutters, Design and modelling, Control systems, Computer architecture, Data acquisition, Switches
Local Volume Mapper Spectrograph Control Package (LVMSCP) is the software that controls three spectrographs to acquire science spectral data cubes automatically. The software architecture design based on Python 3.9 follows a hierarchical structure of Actors, the unit that controls each piece of hardware. We used the software framework Codified Likeness Utility to implement each Actor. The Actors communicate with each other through RabbitMQ, which implements the Advanced Message Queuing Protocol. The Actor applies asynchronous programming with non-blocking procedures as the three spectrographs should operate simultaneously. For the requirement of incremental code change and management in the collaboration of the developers, we adopted the SDSS Github Action, which supports continuous integration/continuous deployment. As a result, unit testing with Pytest tested the individual components of the software, respectively, and lab testing with LVMSCP provided the spectra data for the spectrograph calibration. The LVMSCP provides the application programming interface to the Robotic Observation Package to fulfill the required scientific survey execution for the spectrographs.
We developed control software for an enclosure system of the SDSS-V Local Volume Mapper (LVM) which provides a contiguous 2,500 deg2 integral-field survey. The LVM enclosure, located at the Las Campanas Observatory in Chile, is a building that hosts the LVM instruments (LVM-I). The enclosure system consists of four main systems: 1) a roll-off dome, 2) building lights, 3) a Heating, Ventilation, and Air Conditioning (HVAC) system, and 4) a safety system. Two Programmable Logic Controllers (PLCs) as middleware software directly operate complex mechanisms of the dome and the HVAC via the Modbus protocol. The LVMECP is implemented by Python 3.9 following the SDSS software framework which adopted a protocol, called CLU, with message passing based on the RabbitMQ and Advanced Message Queuing Protocol (AMQP). Also, we applied asynchronous programming to our system to process multiple requests simultaneously. The Dome PLC system remotely sends commands for the operation of a roll-off dome and enclosure lights. The HVAC PLC system keeps track of changing environmental values of the HVAC system in real-time. This software provides observers with remote access by high-level commands.
The Local Volume Mapper (LVM) project in the fifth iteration of the Sloan Digital Sky Survey (SDSS-Ⅴ) will produce large integral-field spectroscopic survey data to understand the physical conditions of the interstellar medium in the Milky Way, the Magellanic Clouds, and other local-volume galaxies. We developed the Local Volume Mapper Spectrograph Control Package (LVMSCP) which controls the instruments for the operation of the spectrograph. We use the new SDSS message passing protocol CLU (Codified Likeness Utility) for the interaction, based on the RabbitMQ that implemented the Advanced Message Queuing Protocol (AMQP). Also, asynchronous programming with non-blocking procedures is applied for the package since three spectrographs should be operated simultaneously. The software is implemented based on Python 3.9, and will provide the Application Programming Interface (API) to the Robotic Observation Package (ROP) for the integrated observation.
The Maunakea Spectroscopic Explorer (MSE) will convert the 3.6-m Canada-France-Hawaii Telescope (CFHT) into an 11.25-m primary aperture telescope with a 1.5 square degrees field-of-view at the prime focus. It will produce multi-object spectroscopy with a suite of low (R∼3,000), moderate (R∼6,000), and high (R∼40,000) spectral resolution spectrographs in optical and near-infrared bands that are capable of detecting over 4,000 objects per pointing. Generally, an exposure time calculator (ETC) should simulate a system performance by computing a signal-to-noise ratio (SNR) and exposure time based on parameters such as a target magnitude, a total throughput of the system, and sky conditions, etc. The ETC that we have developed for MSE has individual computation modes for SNR, exposure time, SNR as a function of AB magnitude, and SNR as a function of wavelength. The code is based on an agile development methodology and allows for a variety of user input. Users must select either LR, MR, or HR spectral resolution settings in order to pull the associated MSE instrument parameters. Additionally, users must specify the target and background sky magnitudes (and have the ability to alter the default airmass and water vapor values). The software is developed with Python 3.7, and Tkinter graphical user interface is implemented to facilitate cross-platform use. In this paper, we present the logic structure and various functionalities of our MSE-ETC, including a software design and a demonstration.
Sloan Digital Sky Survey fifth-generation (SDSS-V) Local Volume Mapper (LVM) is a wide-field IFU survey that uses an array of four 160 mm telescopes. It provides IFU spectra over the optical range with R ∼ 4,000 to reveal the inner components of galaxies and the evolution of the universe. Each telescope observes the science field or the calibration field independently, but all of them should be simultaneously synchronized with the science exposure. To minimize the moving parts, the LVM adopted the siderostat design with a field derotator. We designed the optimized control software for our LVM observation, lvmagp, which controls four focusers, three K-mirror derotators, one fiber selector, four mounts (siderostats), and seven guide cameras. It was built on its owen user interface and messaging protocol called actor and clu based on asynchronous programming. The lvmagp provides three key sequences: autofocus sequence, field acquisition sequence, and autoguide sequence. Also, we designed and fabricated the proto-model siderostat for the software test. The real sky test was made with proto-model siderostat, and the lvmagp showed arcsecond-level field acquisition and autoguide accuracy.
Spectral energy distribution (SED) camera for QUasars in EArly uNiverse (SQUEAN) has been developed and operated at the 2.1 m Otto Struve Telescope in the McDonald Observatory, US, since 2015 February. SQUEAN can have up to 20 medium band filters to measure SEDs of high redshift quasar candidates (z >5), gamma ray bursts, supernova, asteroids, etc. In the development process of the SQUEAN control software, we applied the spiral model, in which the software evolves by the repetition of every systemic process. The SQUEAN control software consists of the SQUEAN Main Observation Package (SMOP), the Kyung Hee University (KHU) Filter wheel Control Package for the McDonald Observatory 82 inch (or 2.1 m) telescope (KFC82), and the KHU Autoguiding Package (KAP82). The SMOP takes science data with various readout modes such as open shutter mode, semi-auto-focus mode, and script mode. The KFC82 controls the filter wheel with medium bands by network communications through the SMOP. The KAP82 monitors a reference star and auto-guides the telescope during observations.
We describe the camera articulation prototype (CAP) for the Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph (GMACS), which is a wide field, multi-object, moderate-resolution, optical spectrograph of the Giant Magellan Telescope (GMT). The GMACS will have the Camera and Grating Articulation System (CGAS) which has two independent cameras and grating modules. The grating angles and the camera angles can be changed to adjust the dispersed light bands on the detector. The electronics components of this system include motors with encoder, pneumatic brakes, and limit switches. We demonstrate how to control the camera angles using a prototype that is designed for the camera articulation controller as a miniature model of the GMACS. The prototype was built with commercially-available extruded aluminum struts and 3D-printed parts and includes two motors with encoders. The prototype was produced quickly and inexpensively, but replicates all functions of the camera articulation mechanism in GMACS. We have developed the control package for the prototype that will be one of the GMACS Device Control System (DCS). The software is designed by the Agile development process and SysML, and developed using Visual C++ on Windows OS. This software has five major control functions: power, homing, resolution mode changing, limit detection, and emergency process. The limit detection is implemented by setting up the limit angle range in the software, because the limit switches are not included in the prototype. We present the demonstration result and discuss the details of the communication route about data flow between high-end user software and hardware components.
The Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph (GMACS) is a first light instrument for the Giant Magellan Telescope (GMT). It will provide multi-object spectroscopy in wide wavelength coverage and wide field of view. The scientific objectives include exoplanet atmospheres, star formation and chemical evolution studies, galaxy assembly histories, and intergalactic medium tomography. The optical layouts are optimized to have high throughput in the natural seeing limit. In this presentation, we report the current status of the instrument development.
We describe the current electronics prototypes for the Flexure Compensation System (FCS) and the Slit Mask Exchange Mechanism (SMEM) for GMACS, a wide-field, multi-object, moderate-resolution optical spectrograph for the Giant Magellan Telescope (GMT). We discuss the details of the FCS and SMEM prototypes, how the prototypes relate to the preliminary conceptual designs of these systems, and what information the prototypes give that can be applied to the final design, as well as the possible next steps for each prototype.
We describe the optical design of GMACS, a multi-object wide field optical spectrograph currently being developed for the Giant Magellan Telescope (GMT). Optical spectrographs for the emerging generation of Extreme Large Telescopes (ELTs) have unique design issues. For example, the combination of both the largest field of view practical and beam widths achieving the desired spectral resolutions force the design of seeing limited ELT optical spectrographs to include large refractive elements, which in turn requires a compromise between the optical performance, manufacturability, and operability. We outline the details of the GMACS optical design subsystems, their individual and combined optical performance, and the preliminary flexure tolerances. Updates to the detector specifications, field acquisition/alignment optics, and optical considerations for active flexure control are also discussed. The resulting design meets the technical instrument requirements generated from the GMACS science requirements, is expected to satisfy the available project budget, and has an acceptable level of risk for the subsystem manufacture and assembly.
An important tool for the development of the next generation of extremely large telescopes (ELTs) is a robust Systems Engineering (SE) methodology. GMACS is a first-generation multi-object spectrograph that will work at visible wavelengths on the Giant Magellan Telescope (GMT). In this paper, we discuss the application of SE to the design of next-generation instruments for ground-based astronomy and present the ongoing development of SE products for the GMACS spectrograph, currently in its Conceptual Design phase. SE provides the means to assist in the management of complex projects, and in the case of GMACS, to ensure its operational success, maximizing the scientific potential of GMT.
We describe the latest optomechanical design of GMACS, a wide-field, multi-object, moderate-resolution optical spectrograph for the Giant Magellan Telescope (GMT). Specifically, we discuss the details of the structure, mechanisms, optical mounts and deflection tracking/compensation as well as the requirements and considerations used to guide the design. We also discuss GMACS’s interfaces with GMT and other instruments.
We discuss the latest developments of a spectrograph for the Giant Magellan Telescope. The instrument is designed to provide high throughput, moderate resolution, optical spectra for the telescope and be capable of flexible and rapid reconfiguration. The focal plane can be populated with custom slit masks or multiple fibers, allowing for observations of multiple objects simultaneously.
We present the current optical design of GMACS, a multi-object wide field optical spectrograph currently being developed for the Giant Magellan Telescope, a member of the emerging generation of Extremely Large Telescopes (ELTs). Optical spectrographs for ELTs have unique design challenges and issues. For example, the combination of the largest practical field of view and beam widths necessary to achieve the desired spectral resolutions force the design of seeing limited ELT optical spectrographs to include aspheric lenses, broadband dichroics, and volume phase holographic gratings - all necessarily very large. We here outline details of the collimator and camera subsystems, the design methodology and trade-off analyses used to develop the collimator subsystem, the individual and combined subsystem performances and the predicted tolerances.
We present a preliminary conceptual optical design for GMACS, a wide field, multi-object, optical spectrograph currently being developed for the Giant Magellan Telescope (GMT). We include details of the optical design requirements derived from the instrument scientific and technical objectives and demonstrate how these requirements are met by the current design. Detector specifications, field acquisition/alignment optics, and optical considerations for the active flexure control system are also discussed.
We describe a preliminary conceptual optomechanical design for GMACS, a wide-field, multi-object, moderate resolution optical spectrograph for the Giant Magellan Telescope (GMT). This paper describes the details of the GMACS optomechanical conceptual design, including the requirements and considerations leading to the design, mechanisms, optical mounts, and predicted flexure performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.