The Large Interferometer For Exoplanets (LIFE) is a proposed space mission that enables the spectral characterization of the thermal emission of exoplanets in the solar neighborhood. The mission is designed to search for global atmospheric biosignatures on dozens of temperate terrestrial exoplanets and it will naturally investigate the diversity of other worlds. Here, we review the status of the mission concept, discuss the key mission parameters, and outline the trade-offs related to the mission’s architecture. In preparation for an upcoming concept study, we define a mission baseline based on a free-formation flying constellation of a double Bracewell nulling interferometer that consists of 4 collectors and a central beam-combiner spacecraft. The interferometric baselines are between 10–600m, and the estimated diameters of the collectors are at least 2m (but will depend on the total achievable instrument throughput). The spectral required wavelength range is 6–16μm (with a goal of 4–18.5μm), hence cryogenic temperatures are needed both for the collectors and the beam combiners. One of the key challenges is the required deep, stable, and broad-band nulling performance while maintaining a high system throughput for the planet signal. Among many ongoing or needed technology development activities, the demonstration of the measurement principle under cryogenic conditions is fundamentally important for LIFE.
Earth is the only known habitable planet and it serves as a testbed to benchmark the observations of temperate and more Earth-like exoplanets. It is required to observe the disk-integrated signatures of Earth for a large range of phase angles, resembling the observations of an exoplanet. In this work, an acousto-optic tunable filter (AOTF)-based experiment is designed to observe the spectro-polarimetric signatures of Earth. The results of spectroscopic and polarimetric laboratory calibration are presented here along with a brief overview of a possible instrument configuration. Based on the results of the spectro-polarimetric calibration, simulations are carried out to optimize the instrument design for the expected signal levels for various observing conditions. The usefulness of an AOTF-based spectro-polarimeter is established from this study, and it is found that, in the present configuration, the instrument can achieve a polarimetric accuracy of <0.3 % for linear polarization for an integration time of 100 ms or larger. The design configuration of the instrument and the planning of conducting such observations from Lunar orbit are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.