Tinsley, under JWST funding, has led the team that has developed a novel and highly versatile piece of ground support equipment for optical surface testing of JWST beryllium mirror segments during optical fabrication. The infrared Scanning Shack Hartmann System (SSHS) offers the advantage of being able to characterize mid-to-high spatial frequency structure on a mirror from early stages of fabrication when slopes may be high and surface irregular, eliminating the need for an extra polishing step before metrology. Working at 9.3μm, the system will accept and measure a wide dynamic range of surface characteristics, including roll-off near the edge of the segment. Knowledge of these surface features at the early grinding stage is imperative if characteristics such as mirror edge roll-off are to be minimized. WaveFront Sciences, producer of commercial COAS and Columbus Shack Hartmann systems, has provided systems engineering and component support for the SSHS system.
The SSHS system is based around a special Long Wave Infrared (LWIR) wavefront sensor developed by WaveFront Sciences that is scanned over the mirror surface, making sub-aperture measurements. The smaller, high-resolution measurements are then stitched together to provide high-resolution measurement of the entire mirror surface, even though the surface is in a rough ground state.
The system leverages technology from smaller visible instrumentation produced by Wavefront Sciences, especially those for surface sub-aperture measurements of semiconductor wafers. This paper will describe the implementation of the first infrared scanning Shack Hartmann system at Tinsley to address optical fabrication optimization of the JWST Primary Mirror Segments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.