The LSST Camera is the sole instrument for the Vera C. Rubin Observatory and consists of a 3.2 gigapixel focal plane mosaic with in-vacuum controllers, dedicated guider and wavefront CCDs, a three-element corrector whose largest lens is 1.55m in diameter, six optical interference filters covering a 320–1050 nm bandpass with an out-of-plane filter exchange mechanism, and camera slow control and data acquisition systems capable of digitizing each image in 2 seconds. In this paper, we describe the verification testing program performed throughout the Camera integration and results from characterization of the Camera’s performance. These include an electro-optical testing program, measurement of the focal plane height and optical alignment, and integrated functional testing of the Camera’s major mechanisms: shutter, filter exchange system and refrigeration systems. The Camera is due to be shipped to the Rubin Observatory in 2024, and plans for its commissioning on Cerro Pachon are briefly described.
The LSST Camera is a complex, highly integrated instrument for the Vera C. Rubin Observatory. Now that the assembly is complete, we present the highlights of the LSST Camera assembly: successful installation of all Raft Tower Modules (RTM) into the cryostat, integration of the world’s largest lens with the camera body, and successful integration and testing of the shutter and filter exchange systems. While the integration of the LSST Camera is a story of success, there were challenges faced along the way which we present: component failures, late design changes, and facility infrastructure issues.
The Integration and Verification Testing and characterization of the expected performance of the Large Synoptic Survey Telescope (LSST) Camera is described. The LSST Camera will be the largest astronomical camera ever constructed, featuring a 3.2 Gpixel focal plane mosaic of 189 CCDs. In this paper, we describe the verification testing program developed in parallel with the integration of the Camera, and the results from our performance characterization of the Camera. Our testing program includes electro-optical characterization and CCD height measurements of the focal plane, at several steps during integration, as well as a complete functional and characterization program for the finished focal plane. It also includes a suite of functional tests of the major Camera mechanisms: shutter, filter exchange system and thermal control. Finally, we expect to test the fully assembled Camera prior to its scheduled completion and delivery to the LSST observatory in early calendar 2021.
The Integration and Verification Testing of the Large Synoptic Survey Telescope (LSST) Camera is described. The LSST Camera will be the largest astronomical camera ever constructed, featuring a 3.2 giga-pixel focal plane mosaic of 189 CCDs with in-vacuum controllers and readout, dedicated guider and wavefront CCDs, a three element corrector with a 1.6-meter diameter initial optic, six optical filters covering wavelengths from 320 to 1000 nm with a novel filter exchange mechanism, and camera-control and data acquisition capable of digitizing each image in two seconds. In this paper, we describe the integration processes under way to assemble the Camera and the associated verification testing program. The Camera assembly proceeds along two parallel paths: one for the focal plane and cryostat and the other for the Camera structure itself. A range of verification tests will be performed interspersed with assembly to verify design requirements with a test-as-you-build methodology. Ultimately, the cryostat will be installed into the Camera structure as the two assembly paths merge, and a suite of final Camera system tests performed. The LSST Camera is scheduled for completion and delivery to the LSST observatory in 2020.
We present the mechanical device used to install the Raft Tower Modules (RTMs) into the cryosat of the camera for the Large Synoptic Survey Telescope (LSST). In an RTM, the charge-coupled devices (CCDs) are packaged into a 3 x 3 Raft Sensor Assembly (RSA) and coupled to a Raft Electronics Crate (REC). An RTM weighs ~10 kg, is roughly 500 mm tall, and has a 126.5 mm-square footprint at the CCDs. The grid array which supports the RTM in the cryostat has a center-to-center distance of 127 mm. One of the key challenges for installing the RTMs in the 500 μm gap between CCDs of adjacent modules - contact between adjacent CCDs is strictly forbidden.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.