The promising II-VI-semiconductor ZnO has achieved strong interest in research in the past years. Especially, epitaxial
growth by metal organic vapor phase epitaxy (MOVPE) is a matter of particular interest due to the large scalability of
MOVPE for commercial mass production and its proven high layer quality for other compound semiconductors. In the
past years tremendous advance has been made in the field of epitaxial growth. However, due to the lack of epiready ZnO
substrates, so far mostly heteroepitaxial growth with a multistep growth process was applied to obtain good surface
morphology and until now not all of the physical properties of such multilayers are fully understood. In this paper we
present recent results of the electrical behavior of such multiple undoped ZnO layers. Despite numerous efforts one big
challenge is the p-type doping of ZnO. Here we present our results to doping experiments with arsenic, nitrogen and as a
new approach simultaneous dual doping of nitrogen and arsenic. Homoepitaxial growth offers a great potential for ZnO
due to some advantages as the absence of thermal and lattice mismatch and potentially low dislocation density. We
present experiments on the thermal treatment of commercial ZnO bulk crystals, which is necessary for subsequent homo-
MOVPE.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.