We have, at last, an observatory dedicated to X-ray polarimetry that has been operational since December 9th, 2021. The Imaging X-ray Polarimetry Explorer (IXPE) is a NASA SMEX mission, in partnership with ASI, based on three X-ray telescopes, each equipped with a polarization-sensitive detector in the focus. An extending boom was deployed in orbit, positioning the detectors at the optimal distance from the optics, which have a 4-meter focal length. The spacecraft is three-axis stabilized, providing power, attitude determination and control, transmission, and commanding capabilities.
After two and a half years of observation, IXPE has detected positive polarization from nearly all classes of celestial sources that emit X-rays. In this report, we describe the IXPE mission, detailing the performance of the scientific instrumentation after 2.5 years of operation. We also present the main astrophysical results and a few examples of scientific performance during flight.
IXPE, the first observatory dedicated to imaging x-ray polarimetry, was launched on Dec 9, 2021 and is operating successfully. A partnership between NASA and the Italian Space Agencey (ASI) IXPE features three x-ray telescopes each comprised of a mirror module assembly with a polarization sensitive detector at its focus. An extending boom was deployed on orbit to provide the necessary 4 m focal length. A three-axis-stabilized spacecraft provides power, attitude determination and control, and commanding. After one year of observation IXPE has measured statistically significant polarization from almost all the classes of celestial sources that emit X-rays. In the following we describe the IXPE mission, reporting on its performance after 1.5 year of operations. We show the main astrophysical results which are outstanding for a SMEX mission.
Launched on 2021 December 9, the Imaging X-ray Polarimetry Explorer (IXPE) is a NASA Small Explorer Mission in collaboration with the Italian Space Agency (ASI). The mission will open a new window of investigation—imaging x-ray polarimetry. The observatory features three identical telescopes, each consisting of a mirror module assembly with a polarization-sensitive imaging x-ray detector at the focus. A coilable boom, deployed on orbit, provides the necessary 4-m focal length. The observatory utilizes a three-axis-stabilized spacecraft, which provides services such as power, attitude determination and control, commanding, and telemetry to the ground. During its 2-year baseline mission, IXPE will conduct precise polarimetry for samples of multiple categories of x-ray sources, with follow-on observations of selected targets.
Scheduled to launch in late 2021 the Imaging X-ray Polarimetry Explorer (IXPE) is a Small Explorer Mission designed to open up a new window of investigation -- X-ray polarimetry. The IXPE observatory features 3 identical telescope each consisting of a mirror module assembly with a polarization-sensitive imaging x-ray detector at its focus. An extending beam, deployed on orbit provides the necessary 4 m focal length. The payload sits atop a 3-axis stabilized spacecraft which among other things provides power, attitude determination and control, commanding, and telemetry to the ground. During its 2-year baseline mission, IXPE will conduct precise polarimetry for samples of multiple categories of x-ray sources, with follow-on observations of selected targets. IXPE is a partnership between NASA and the Italian Space Agency (ASI).
IXPE, the Imaging X-ray Polarimetry Explorer, is a NASA SMEX mission with an important contribution of ASI that will be launched with a Falcon 9 in 2021 and will reopen the window of X-ray polarimetry after more than 40 years. The payload features three identical telescopes each one hosting one light-weight X-ray mirror fabricated by MSFC and one detector unit with its in-orbit calibration system and the Gas Pixel Detector sensitive to imaging X-ray polarization fabricated by INAF/IAPS, INFN and OHB Italy. The focal length after boom deployment from ATK-Orbital is 4 m, while the spacecraft is being fabricated by Ball Aerospace. The sensitivity will be better than 5.5% in 300 ks for a 1E-11 erg/s/cm2 (half mCrab) in the energy band of 2-8 keV allowing for sensitive polarimetry of extended and point-like X-ray sources. The focal plane instrument is completed, calibrated and it is going to be delivered at MSFC. We will present the status of the mission at about one year from the launch.
The Imaging X-ray Polarimetry Explorer (IXPE) will expand the information space for study of cosmic sources, by adding polarization to the properties (time, energy, and position) observed in x-ray astronomy. Selected in 2017 January as a NASA Astrophysics Small Explorer (SMEX) mission, IXPE will be launched into an equatorial orbit in 2021. The IXPE observatory includes three identical x-ray telescopes, each comprising a 4-m-focal-length (grazing-incidence) mirror module assembly (MMA) and a polarization-sensitive (imaging) detector unit (DU). The optical bench separating the MMAs from the DUs is a deployable boom with a tip/tilt/rotation stage for DU-to-MMA (gang) alignment, similar to the configuration used for the NuSTAR observatory. The IXPE mission will provide scientifically meaningful measurements of the x-ray polarization of a few dozen sources in the 2-8 keV band, over the first two years of the mission. For several bright, extended x-ray sources (pulsar wind nebulae, supernova remnants, and an active-galaxy jet), IXPE observations will produce polarization maps indicating the magnetic structure of the synchrotron emitting regions. For many bright pulsating x-ray sources (isolated pulsars, accreting x-ray pulsars, and magnetars), IXPE observations will produce phase-resolved profiles of the polarization degree and position angle.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.