Hyperspectral imaging (HSI) is a powerful tool widely used for various scientific and industrial applications due to its ability to provide rich spatiospectral information. However, in exchange for multiplex spectral information, its image acquisition rate is lower than that of conventional imaging, with up to a few colors. In particular, HSI in the infrared region and using nonlinear optical processes is impractically slow because the three-dimensional (3D) data cube must be scanned in a point-by-point manner. In this study, we demonstrate a framework to improve the spectral image acquisition rate of HSI by integrating time-domain HSI and compressed sensing. Specifically, we simulated broadband coherent Raman imaging at a record high frame rate of 25 frames per second (fps) with 100 pixels × 100 pixels, which is 10 × faster than that of previous work, based on an experimentally feasible sampling scheme utilizing 3D Lissajous scanning.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.