In this article, the polymer photovoltaic devices based on the poly(3-hexylthiophene)/TiO2 nanorods hybrid material is present. An enhancement in the device performance can be achieved by removing or replacing the insulating surfactant on the TiO2 nanorods surface with a more conductive ligand, which can play the role to assist charge separation efficiency or also to prevent from back recombination, giving a large improvement in the short circuit current and fill factor. The relatively high power conversion efficiency of 2.2 % under simulated A.M. 1.5 illumination (100mW/cm2) can be achieved, providing a route for fabricating low-cost, environmentally friendly polymer photovoltaic devices by all-solution processes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.