We investigate the magnetic field effects in thin-film diodes made of the conducting polymer poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) as a function of temperature and electrical current. Magnetoresistance of these devices can be measured to high precision on two distinct magnetic field scales: <3 mT, where a pronounced nonmonotonic magnetoresistance response can be resolved, owing to weak hyperfine coupling, and at intermediate magnetic fields, ranging between 3 and 10 mT, where strong monotonic magnetoresistance is seen. The detailed examination of the magnetoresistance effects in both regimes allows one to scrutinize the accuracy of the underlying models for the behavior of these kinds of materials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.