Single-photon detector array technologies have advanced significantly in recent years. Cameras now exist that are not only sensitive to single photons but the individual pixels in the sensor provide photon time-of-arrival information the picosecond regime. Such unprecedented sensitivity and temporal resolution opens up a number of exiting new applications, such as light-in-flight imaging, looking around corners with laser echoes, and seeing through dense scattering media. I will discuss the recent developments of the camera technology and discuss our latest results. I will give details of our latest field trials, where we have been using single-photon detector array sensors to see through fog and smoke. I will also discuss our latest results for high-speed imaging in three dimensions. The latest sensor is able to capture 3D data at frame rates greater than 1000 frames per second. This technology is relevant for the analysis of rapidly changing systems where three dimensional information is necessary.
The capability of Single-Photon Avalanche Diodes (SPADs) to detect photons with picosecond timing precision and shotnoise limited performance has given rise to a range of biological and biomedical applications, from Fluorescence Lifetime Imaging Microscopy (FLIM) to Raman Spectroscopy and Positron Emission Tomography (PET). The use of SPAD sensors has also been successfully demonstrated in Single-Molecule Localisation Microscopy. Traditionally implemented as point detectors, recent advances in SPAD technology, such as compact, binary pixels and back-side illuminated, 3D-stacked architectures, have led to 2-D imaging arrays of increasing resolution and fill factor. Combined with high frame rates (in the kFPS range), and negligible read noise, the sensors offer an exciting prospect for capturing fast temporal dynamics in life science cellular imaging. The work in this paper considers the application of SPAD imaging arrays to widefield fluorescence lifetime imaging of high-speed particles in microscopy. We demonstrate, using a time-gated binary SPAD array, that by tracking particles, and spatially re-assigning the underlying photon counts accordingly, lifetime estimates for fast-moving objects are possible. Moreover, we give the first demonstration of FLIM using a SPAD imaging array with on-chip histogramming of photon arrival time, with potential frame rates of several 100FPS. Both FLIM techniques are illustrated using experimental results based on fluorescent microspheres undergoing Brownian motion. The results pave the way towards applications in live-cell microscopy, such as the monitoring of the fluorescence lifetime of highly mobile cell structures, with a view, for example, to study molecular interactions using Förster Resonance Energy Transfer (FRET) measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.