Standard techniques for detection of thyroid cancer (ultrasound screening and fine-needle aspiration biopsy) have limited sensitivity and specificity, leading to a very large number of unnecessary thyroid extraction surgeries. With the aim of improving diagnosis, hybrid diffuse optics and ultrasound were used on nodules patients to obtain tissue hemodynamic information. Nodules rated 4A or 4B in the thyroid imaging reporting and data system (TI-RADS) are of clinical relevance and were classified using a logistic regression model built on our results. Fourteen benign and four malignant nodules were classified with a sensitivity of 100% and specificity of 77%.
LUCA platform combines clinical ultrasound with near-infrared time-domain and correlation spectroscopies to improve thyroid cancer screening. We characterized its precision and classified thyroid nodules in a clinical campaign on 45 subjects.
The LUCA device combines clinical ultrasound, time-domain near infrared and diffuse correlation spectroscopies with the aim of improving thyroid cancer screening sensitivity and specificity. The preliminary clinical campaign on patients (n=31) with thyroid nodules and healthy controls (n=11) allowed the characterization of the precision of the instrument and demonstrated that using a couple of biomarkers the muscle-to-nodule contrast allows an area under the curve of 0.92 for single-nodule patients and 0.77 for all patients in differentiating benign and malignant nodules in a receiver operating characteristic curve. We will present the updated results from the ongoing study.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.