We experimentally generated superpositions of higher-order Bessel beams that possess no global orbital angular momentum (OAM), yet exhibit an angular rotation in their intensity profile as the field propagates. The digital holograms encoded on a spatial light modulator (SLM), used for generating such fields, consist of two annular rings of unequal radial wave-vectors where each ring is encoded with an azimuthal mode of equal order but opposite charge. We present experimentally measured angular rotation rates for some example superposition fields, which are shown to be in good agreement with that predicted theoretically. Introducing a second SLM and a Fourier transforming lens, we demonstrate a simple approach to perform an azimuthal decomposition of our generated optical fields. Bounding the match-filter to an annular ring, of varying radius, we are able to perform a scale-independent azimuthal decomposition of our initial field. From the measured weightings of the azimuthally decomposed modes we show reconstruction of the cross-sectional intensity profile and OAM density of our initial field.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.