The GaSb quantum dots (QDs) with type II band alignment have attracted great attention recently. They are predicted to be optimizing active region materials for achieving high efficient intermediate-band solar cells and for obtaining ultra-long storage time for memory cells. In this research, GaSb QDs sandwiched inside InAlAs matrix lattice-matched to InP (001) substrate have been obtained via droplet epitaxy. The droplet epitaxy enable us to achieve low density (~2.6 x 10^9/cm^2) and large size (average height ~6.5nm) for the QDs while the lattice mismatch between the GaSb and InAlAs matrix is only ~4%. PL measurements reveal a type-II band alignment for these GaSb/InAlAs/InP QDs. The PL peak energy of QDs shows a blue-shift of >100 meV when the laser intensity increases by six orders of magnitude. Time-resolved PL measurements further confirm the type-II band alignment for the QDs by showing a maximum carrier lifetime of ~4.5 ns. The abnormal dependence of peak energy of QD PL band on the temperature in together with the special PL decay curve indicate that these GaSb/InAlAs QDs likely have different physics mechanism from common GaSb/GaAs type-II QDs. This study provide useful information for understanding the band structure and carrier dynamics of the GaSb/InAlAs QDs grown on InP surface.
The InGaAs surface quantum dots grown on GaAs surface without a capping layer (surface quantum dots, SQDs) are expected to play an important role for sensor applications due to their special surface sensitive properties. In this research, we investigated the photoluminescence (PL) characteristics of such In0.35Ga0.65As/GaAs SQDs with a layer of buried InGaAs QDs (BQDs) as reference. The uncapped InGaAs SQDs are integrated into a hybrid nanostructure with SQDs and buried quantum dots (BQDs) spaced by a 70 nm GaAs layer. Due to this thick GaAs spacer, we assert there is no quantum coupling between the SQDs and BQDs so that each layer of QDs has independent emission. The PL spectra show that the SQD PL intensity is far less than BQDs at low temperature but exceeds BQDs at high temperature, indicating a possible carrier transfer between the SQDs and surface states. With increasing excitation intensity, the PL spectra show clearly broaden on the high energy side and a blueshift for both the SQDs and BQDs. Therefore, there is lateral carrier transfer among each layer of QDs due to their high areal density. The intra-layer carrier transfer among SQDs as well as the inter-layer carrier transfer between SQDs and surface states attribute to carriers dynamics that make the SQDs having optical performance very different from the BQDs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.