Epilepsy is a neurological condition caused by sudden onsets of electrical activity in the brain. This results in frequent, uncommon seizures, which can lead to severe physical consequences. In a clinical setting, data recorded using EEG (Electroencephalogram) is used to help diagnose the condition. This research focuses on the use of Short-Term Fourier transform (STFT) and feature extraction in the EEG data for the use in a majority voting model using logistic regression (LR) to detect the presence of epileptic seizures in the five EEG frequency bands ( i.e. Alpha, Beta, Gamma, Delta, and Theta). To quantify, a number of evaluation metrics have been calculated. Overall, the model was able to achieve an accuracy of up to 92%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.